
Contextual Def-Use Associations for Object Aggregation �

Amie L. Souter and Lori L. Pollock
Computer and Information Sciences

University of Delaware
Newark, DE 19716

fsouter, pollockg@cis.udel.edu

ABSTRACT
This paper presents a novel formulation of de�nitions, uses,
and def-use associations for objects in object-oriented pro-
grams by exploiting the relations that occur between classes
and their instantiated objects due to aggregation. Contextual
def-use associations are computed by generating a partial call
sequence for each def and use based on object aggregation
relations. By extending an escape points-to graph represen-
tation of the program, we have developed and implemented
three strategies for achieving di�erent levels of context for
contextual def-use associations. Our experiments reveal that
with all three strategies, multiple unique contextual def-use
associations related to the same traditional (context-free) as-
sociation are often generated. Contextual def-use associa-
tions are particularly useful for increasing test coverage and
focusing the testing on critical method invocation sequences
of object-oriented programs.

1. INTRODUCTION
Static def-use information has been shown to be useful not

only for optimizing and parallelizing compilers, but also for
debuggers, software testing, editors, program integration,
and maintenance. In procedural languages, a def of a vari-
able is an assignment of a value to the variable via a read
or assignment operation, and a use of a variable is a refer-
ence to the variable, either in a predicate or a computation.
A def-use association for variable v is an ordered tuple (v,
d, u) where d is a statement where v is de�ned and u is a
statement that is reachable by at least one de�nition-clear
path from d, and u uses v or a memory location bound to v.
In an object-oriented programming paradigm, not only

is the computation of def-use associations complicated by
polymorphism and inheritance, but object de�nitions and
uses could be interpreted in a number of ways due to object
aggregation. Programmers create object aggregation when

�This work was supported in part by the National Science
Foundation Grant EIA-98062525 and Grant EIA-9703088.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PASTE’01, June 18-19, 2001, Snowbird, Utah, USA..
Copyright 2001 ACM 1-58113-413-4/01/0006 ...$5.00.

they design a class that includes one or more objects of an-
other class. Because the object-oriented paradigm promotes
signi�cant use of aggregation, manipulations to objects can
have far reaching e�ects on the object de�nitions and uses of
other objects through the aggregation has-a relation. From
another perspective, an object C could be de�ned or used
due to a de�nition or use of an object that is embedded in a
possibly deep chain of aggregation has-a class relations with
the object C.
In this paper, we present a novel formulation of individ-

ual object de�nitions and uses, which seeks to capture the
object aggregation relation in addition to addressing inher-
itance and polymorphism. The resulting object def-use as-
sociations are contextual in that they provide context with
the computed def-use associations in an object-oriented pro-
gram, in contrast to traditional def-use associations, which
we call context-free because they are reported free of any
context. One useful application for contextual def-use asso-
ciations is structural testing coverage that captures the ob-
ject aggregation relations. Because a contextual de�nition
(use) is generated as a partial call sequence ending in a given
de�nition (use), multiple contexts for the same context-free
association commonly result when object aggregation rela-
tions are captured. Because a single def-use association is
considered to be covered by a test case that causes exe-
cution along any path that passes through the de�nition
and later the use, testing based on contextual def-use asso-
ciations can provide increased test coverage by identifying
multiple unique contextual def-use associations for the same
context-free association. In addition, it is important to be
able to select test cases that exercise the combined e�ects
of di�erent method invocations. Through contextual def-
use associations based on object aggregation relations, we
are focusing on critical combinations of method invocations.
The impact is more thorough and focused testing to be per-
formed for the manipulation of objects in object-oriented
programs.
This new formulation was inspired by observations we

made during our experimental studies of our OMEN ap-
proach to software testing [10] and our studies of the char-
acteristics of Java programs [11]. In particular, by extend-
ing the escape points-to graph representation developed by
Whaley and Rinard [12], we are able to generate contextual
def-use associations with several strategies, each providing
a di�erent level of context, but all based on the program's
object aggregation relations.
The main contributions of this paper beyond our previous

papers are (1) a presentation of the def-use problem in the

13

class Stack{

Node top;

1 public Stack(){ top = null; }

2 public void push(Object e) {
3 if (top == null)
4 top = new Node(e, null);

5 else
6 top = top.insert(e); }

7 public Object pop(){
8 Object t = null;

9 if(isempty())
10 System.out.println("ERROR:

nothing to pop");
11 else{
12 t= top.get();
13 top = top.remove(); }

14 return t; }

15 public boolean isempty() {
16 return top == null; } }

class StackClient{
17 public static void main(String args[]){
18 Stack s = new Stack();
19 for(int i = 0; i < 10; i++)
20 s.push(new Integer(i*2));

21 while(!(s.isempty())){
22 Object x = s.pop();
23 System.out.println(x); } } }

class Node{

Object data;
Node next;

24 Node(Object e, Node n) {
25 data = e;

26 next = n; }

27 Object get() { return data;}

28 Node insert(Object e){
29 Node temp = new Node(e, this);

30 return temp; }

31 Node remove(){
32 Node e = this;
33 e = e.next;
34 return e; } }

Figure 1: Object-oriented stack implementation.

presence of object aggregation with an example motivating
contextual def-use associations and comparing them with
context-free def-use associations computed by others (and
our previous work), (2) development of a set of strategies
for achieving di�erent levels of context for contextual def-
use associations, and (3) an experimental study comparing
the di�erent strategies for computing contextual def-use as-
sociations and traditional context-free def-use associations.

2. FORMULATION OF DEF-USE
ASSOCIATIONS FOR OOP

The central role of an object in an object-oriented pro-
gram makes it necessary to consider an object not as a sin-
gle variable, but as a complex variable with state that can
change through the manipulation of its attributes. De�ning
and computing def-use associations for objects is particu-
larly complicated by (1) the impossibility of statically iden-
tifying the actual receiver of a message at some call sites due
to polymorphism, and (2) the relations occurring between
classes and their instantiated objects due to aggregation and
inheritance. This paper focuses on the second issue, but the
implementation of our techniques also addresses the �rst is-
sue.

2.1 Example
The Java code in Figure 1 illustrates some of the issues

involved in de�ning and computing def-use associations for
object-oriented programs. For example, in class Node and
class Stack, the set of the possible def-use associations in-
cludes: (data,25,27), (next,26,33), (top,13,16), and (top,6,3).
Although these def-use associations are correct, they provide
no context about how they are being used in conjunction
with an object. For example, consider the def-use associa-
tion, (next,26,33). In order to actually de�ne or use the �eld
next, a sequence of method calls associated with an object
must be executed. The key observation is that if we use call
sequences to characterize def-use associations of objects, we
provide more context to the def-use associations.
Continuing with the example, we could calculate the fol-

lowing contextual def-use association of the object, s of type
Stack: ((20-4-25), (22-12-27)). This notation describes that
the object s is de�ned through a sequence of calls, (20-4)
that lead to the �eld data being de�ned at line 25, which is
associated with the class Stack through the aggregate rela-
tion with the Node class. Additionally, the object s is used
after the execution of a sequence of calls that lead to the use
of data at line 27, and there is a def-clear path between the
def (20-4-25) and use (22-12-27).

2.2 Previous Work
Several researchers have presented de�nitions and algo-

rithms for computing object def-use associations with the
goal of addressing polymorphism and/or relations between
classes[6, 1, 7, 11, 2]. In a prior paper[11], we presented a
simple method for de�ning the def and use of an object in
terms of state changes created by method calls potentially
changing the values of the object's instance variables. The
approach was based on computing ow-insensitive MOD and
USE side e�ects. The computed def-use associations were
not only context-free, but also lacked precision due to their
ow-insensitive nature.
Alexander and O�utt developed an integration testing

technique for object-oriented programs by extending their

14

method coupling technique to handle inheritance, aggrega-
tion, and polymorphism[1]. Coupling-based testing requires
that programs execute each de�nition of a variable in a caller
to a call site, and then execute the uses of the corresponding
formal argument in the callee. Similar to other de�nitions,
they de�ne an object to be de�ned when a value is assigned
to a variable corresponding to an instance of a class. Ad-
ditionally, they de�ne an indirect de�nition of an object, i-
def, to occur when a method m de�nes an instance variable
bound to the object invoking m. Alternatively, an indirect
use, i-use, occurs when m references the value of one of the
object's instance variables. In their work, only one level of
callees is considered for a def-use to be indicated (i.e., the
def must occur in the callee for a coupling) and the reported
def-use associations are context-free.
Chen and Kao[2] propose de�nitions for de�ning and us-

ing an object as follows: An object is de�ned if its state is
initialized or changed, through one of the following acts (1)
the constructor is called, (2) a data member is de�ned, or
(3) a member function that modi�es a data member is in-
voked. An object is used through the following conditions:
(1) a data member is used in a computation or predicate, (2)
a member function that uses the data member is invoked,
or (3) the object is passed as a parameter in a function call.
After computing intramethod def-use sets by traditional

data ow analysis techniques, they build an object control
ow graph (OCFG) to compute the interprocedural object
def-use pairs. Each method of the class is represented as
a supernode containing a CFG for its internal control ow.
Call graph edges are represented as message-passing edges
from the calling method's call site node in its CFG to the
supernode of the callee method. Method-def-use edges are
inserted between supernodes based on intramethod def-use
pairs and message-passing edges in order to direct further
propagation. An iterative algorithm adds method-def-use
edges and intermethod def-use pairs until the OCFG stabi-
lizes. The object def-use pairs computed by Chen and Kao
fall into the category of intermethod def-use pairs as de-
�ned by Harrold[4], which are interprocedural def-use pairs
that exist regardless of client usage of the class being tested.
Chen and Kao suggest that interclass object def-use pairs
can be computed using interprocedural data ow techniques
developed by Harrold and So�a[3]. However, these tech-
niques do not address the complications of object-oriented
features, in particular, aggregation.
The work by Chen and Kao is the most closely related

to our work. Unfortunately, several key descriptions and
assumptions of their technique are left unclear in their pa-
per. In particular, it is not clear whether the computation of
method def-use sets handles multiple(repeated) composition
of objects. Without this capability, Chen and Kao do not
fully address the potential aggregation of objects, where a
data member may be an object rather than a primitive type.
The terms intraclass and interclass are not well de�ned and
do not appear to be consistent with de�nitions by other au-
thors[4, 11]. Most importantly, the computed def-use pairs
are context-free.

3. DEFINING CONTEXTUAL DEF-USE
ASSOCIATIONS

We de�ne a contextual def-use association to be a def-
use association in which the def and use contain context

beyond the variable and the location of the de�nition and
use. Our work focuses on providing context to defs and uses
to reect the object aggregation relations. An aggregation
relationship is also known as a has-a relationship. UML
terminology de�nes a stronger form of aggregation called
composition, where the aggregate(whole) object is respon-
sible for memory allocation/deallocation of the parts that
compose the whole object. We do not distinguish between
di�erent forms of whole-part relationship between objects.
In this paper, aggregation is de�ned as follows: a relation-
ship between classes where one class contains an object of
a second class[9]. An example of an aggregate relation is
shown in Figure 1, where class Stack contains an instance of
class Node as one of its parts.
In our case, context is a sequence of method call sites

ending with the location of the actual load (setting a ref-
erence to point to the object referenced by an object �eld,
r1 = r2:f) or store (setting a �eld of an object to point to
an object, r1:f = r2) of an object �eld. The call sequence
may or may not be a complete call sequence, but rather a
partial call sequence that does not include every call site
that needs to be executed to lead to the actual load or store
of an object �eld.
We have de�ned four levels of context for computing con-

textual def-use associations based on object aggregation. We
use the naming convention cdu-x to indicate the strategy
that computes contextual def-use associations with context
level x. Higher context levels provide more context with the
def and use, but with the tradeo� of increased space (and
possibly compute time) requirements.

cdu-0: The base case is traditional, context-free def-use as-
sociations, of the form (v, def, use) where def is a statement
de�ning a variable v that is potentially used at statement
use.

cdu-1: Each cdu-1 is a tuple (o,def,use) for an object o in
which def (use) is de�ned to be a pair (CSom-L)

1. CSom is
the call site of the method call leading to a modi�cation of
the state of object o. L is the location of the actual store
(load) causing the modi�ed state for object o.

cdu-2: Each cdu-2 is a tuple (o,def,use) for an object o
in which def (use) is de�ned to be a sequence of the form
(CSom-(CSsccentry -CSsccexit)*-L). The �rst and last entries
of the sequence are the same as cdu-1. The internal sequence
is a sequence of pairs where each pair consists of the entry
and exit nodes of a strongly connected component in the call
graph. This context level represents a def (use) of object o
as a partial static call sequence from a call to object o's
method including only the entry and exit of each strongly
connected component along the call chain to the store (load)
causing the object state change. The sequence is partial
because there may be several calls between the call sites
included in the context which are not represented, and thus
there may be multiple call sequence paths associated with
any two consecutive call sites represented in the contextual
def-use association.

cdu-3: Each cdu-3 is a tuple (o,def,use) for an object o in

1We represent the tuples for defs and uses with hyphens
to distinguish them from the def-use associations which are
represented as tuples.

15

exit
SCC;

entry
SCC;

exit
SCC;

entry
SCC;

method x() {

 CS1: o.y();

...

}

CSn: o.z();

S: v =

L: = v

...

y

z

...

X

Figure 2: Illustration of contextual du.

which def is de�ned to be a sequence (CSom-CS1-...-CSm-
L) where the �rst and last entries of the sequence are the
same as cdu-1, and the internal sequence of CSi are call
sites in a call sequence leading from the original call site to
the store, with each strongly connected component (SCC)
represented by a single sequence of call sites through the
SCC (i.e., no multiple passes through the SCC are included).
This context level represents the object aggregation relations
more completely than the lower context levels, but at the
expense of increased space requirements.
Figure 2 shows a portion of a call graph used to illus-

trate cdu forms. Consider the cdu-1 for cdu-0, (V; S; L),
that starts at node x and ends at the nodes containing the
def and use of v, which we can assume is a �eld associated
through an aggregation relationship of object o. The cdu-1
is represented as (o; CS1 � S;CSn � L). To provide more
context to the def and use, we use cdu-2 and de�ne the as-
sociation as follows: (o; CS1 � SCC; entry � SCC; exit �
S;CSn� SCC; entry� SCC; exit�L). Finally, to provide
even more context to the load and store of object o, we use
cdu-3: (o; CS1 � ::: � SCCentry � ::: � SCCexit � ::: �
S;CSn � ::: � SCCentry � ::: � SCCexit� :::� L), where
the ... would contain a sequence of nodes in the SCC.

4. CONSTRUCTING CONTEXTUAL DEF-
USE ASSOCIATIONS

To compute contextual def-use associations, we extended
and modi�ed the points-to escape graph program represen-
tation developed by Whaley and Rinard [12]. The points-to
escape graph representation combines points-to information
about objects with information about which object creations
and references occur within the current analysis region ver-
sus outside this program region. The points-to information
characterizes how local variables and �elds in objects refer
to other objects. The escape information can be used to

determine how objects allocated in one region of the pro-
gram can escape and be accessed by another region of the
program.
In the points-to escape graph, nodes represent objects

that the program manipulates and edges represent refer-
ences between objects. Each kind of object that can be
manipulated by a program is represented by a di�erent set
of nodes in the points-to escape graph. There are two dis-
tinct kinds of nodes, namely, inside and outside nodes. An
inside node represents an object creation site for objects
created and reached by references created inside the current
analysis region of the program. In contrast, an outside node
represents objects created outside the current analysis re-
gion or accessed via references created outside the current
analysis region. There are several di�erent kinds of out-
side nodes, namely, parameter nodes, load nodes, and return
nodes. The distinction between inside and outside nodes is
important because it is used to characterize nodes as either
captured or escaped. The escape information is particularly
useful for analyzing incomplete programs and for providing
feedback to a software tester.
We have extended the points-to escape graph by adding

annotations to edges in the graph. The annotations pro-
vide information about where basic object manipulations
i.e., loads and stores of objects, occur within a program.
Our resulting representation is called an Annotated Points-
to Escape (ape) graph. A detailed description of the ape
graph representation, construction algorithm, and examples
are presented in [10]. Here, we give a brief overview.
Figure 3 shows an example set of annotations on a single

edge of an ape graph. The edge labeled next represents
a reference from a �eld named next of the object of type
Node, annotated with both a load and store annotation. The
annotations indicate that there exist both a load and store
of the �eld next. Further, the location where the load and
store occurs is maintained through the annotations. The
annotation, (store 20-4-26), represents two calls, one invoked
on line 20 of the program. The second call invoked on line
4 can lead to a store of an object into the �eld next at line
26. Similarly, the load of the �eld next occurs at line 33,
following a chain of calls from lines 22 and 13.
Before an ape graph representation is constructed, a pre-

cise call graph is created. Then, we build one ape graph per
method in the program. For a given method, an initial ape
graph is constructed to represent the parameters and class
objects on entry to the method. The ape graph is re�ned by
repeatedly processing the object-related statements in the
CFG of the method until a �xed point is reached. At each
statement, ape graphs representing the predecessors of the
statement in the CFG are �rst merged into a single graph.
The new ape graph in e�ect at the program point imme-
diately after the statement is constructed by applying the
statement's transfer function to the merged graph that was
in e�ect immediately before the statement. For example, in

Object of type NodeObject of type Node

store: 20-4-26next
load: 22-13-33

Figure 3: Illustration of ape graph annotation.

16

Name Problem Domain # of bytecode instr # of classes # of methods

User Library User Library User Library
log message log 125 16740 2 131 3 500
jload java installer 322 17235 1 153 3 613
echo debugging web server 342 18571 3 153 14 528
compress text compression 2500 7070 17 90 50 301
db database retrieval 2516 11648 9 100 240 306
richards task queues 5807 3948 73 33 350 93

Table 1: Benchmark program characteristics.

the analysis of a load statement, the edges between a refer-
ence and the object which it references before the statement
are deleted (or killed) when the reference points to a new
object after the statement.
Interprocedural analysis is achieved through merging the

parameterized ape graphs of the potentially invoked meth-
ods at a call site with the ape graph at the point imme-
diately before the call site, to form the ape graph at the
point just after the call site. Nonrecursive programs can be
processed in a reverse topological sort order, while recursive
programs will involve �xed-point iterative analysis within
each strongly connected component of the call graph.
A given load/store annotation on an ape graph edge is

incrementally computed by modifying the points-to escape
graph merge algorithm performed at a call site to merge a
callee's ape graph into a caller's ape graph. As an edge is
mapped from a callee's ape graph into the caller's ape graph
at a call site in the caller, the statement number, and the
earliest visible statement for the call site are concatenated
onto the annotation sequences mapped from the callee's ape
graph.
The contextual def-use associations are computed by a

separate topological traversal of the call graph starting at
the root, analyzing each call graph node's ape graph. Du-
plicate contextual def-use associations are avoided through
a marking scheme. The load and store annotations on each
ape graph edge are analyzed to identify contextual def-use
associations. Di�erent context levels for contextual def-use
associations can be obtained by altering the way that ape
graph edges are annotated, without altering the actual def-
use association computation pass. Since annotations are
incrementally augmented during the operation of merging
a callee's ape graph information into a caller's ape graph,
the di�erent strategies are all implemented by di�erent ver-
sions of the merge operation. The versions di�er in which
call sites are actually saved as part of an annotation as it is
being incrementally constructed.

5. EMPIRICAL STUDY
We have implemented the computation of contextual def-

use associations within the FLEX compiler framework from
MIT [5]. In particular, we have extended the points-to es-
cape graph construction within the FLEX compiler to create
an ape graph program representation, which provides the
environment to build the di�erent levels of contextual def-
use associations. We have conducted experiments on several
Java benchmarks to compare the total number of contextual
def-use associations (cdus) computed by each context level
strategy, as well as the distribution of di�erent numbers of
cdus computed for the same context-free def-use association
(du) under each context level strategy.

Name cdu-0 cdu-1 cdu-2 cdu-3

log 67 165 314 471
jload 82 173 515 716
echo 97 162 283 356
compress 44 81 86 130
db 62 144 149 193
richards 130 175 175 343

Table 2: Total number of cdus per context level.

Table 1 provides insight into the nature of the benchmarks
we have used for our experiments. The general character-
istics of a program have been separated into the user and
library components of the program, where library refers to
classes in the Java class library. The columns in Table 1
show the number of (user and library) JVM instructions,
classes, and methods in each benchmark. We analyzed the
entire program including the parts of the Java library used,
which makes the benchmarks overall substantially larger
than the user code alone.
Table 2 presents the total number of computed cdus by

each context level strategy for each benchmark. Figure 4
illustrates the percent increase in the number of cdus over
the number computed by cdu-0. From both of these �gures,
we observe that as the context level increases, the number of
computed cdus increases. In all cases, context level 3 results
in a substantially higher percent increase. We believe that
the larger number of cdus for the programs log and jload
are attributed to the heavy use of object-oriented design.
Even though these benchmarks have a small number of user
classes, we noticed that jload and log have more complex
class relationships with the library classes than the other
benchmarks.
Figure 5 shows the cumulative distribution of the num-

ber of unique computed cdus per context-free du (cdu-0).
For example, the cumulative distribution over all the bench-
marks for cdu-1 reects 50 instances where two unique cdus
were reported in place of a single context-free du. Look-
ing at the data for the 1-1 ratio of cdus to context-free
cdus, we observe that as the context of the def-use pairs
increases (cdu-1 to cdu-3), the frequency of the 1-1 def-use
pairs decreases. As the context level increases, more cdus
are distributed over the set of other ratios higher than one.
However, most of the ratios that we observed were between
2-1 and 10-1. These results suggest that testing coverage
could be increased by contextual def-use associations, but
the number of additional def-use associations does not ex-
plode to become impractical.

17

0
100
200
300
400
500
600
700
800
900

co
m

pr
es

s db ric
h

ec
ho log jlo

ad

Benchmarks

P
er

ce
n

t
in

cr
ea

se
 in

 t
h

e
to

ta
l

n
u

m
b

er
 o

f
d

u
 p

ai
rs

cdu-1
cdu-2
cdu-3

Figure 4: Percent increase in number of cdus over cdu-0.

0

50

100

150

200

250

300

1 3 5 7 9 11 13 15 17

Number of unique cdus
 per context free du

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n

cdu-1
cdu-2
cdu-3

Figure 5: Cumulative distribution of unique cdus per context-free du.

18

6. APPLICATION TO SOFTWARE TESTING
Traditional data ow testing uses coverage criteria to se-

lect subpaths in the program for testing based on sets of
du chains[8]. After the du chains have been computed, test
cases are generated, manually or automatically, to exercise
the du chains according to a selected coverage criterion, such
as all-defs, all-uses, and all-du-paths[8].
However, using traditional data ow testing coverage cri-

teria for object-oriented programs may fall short on achiev-
ing good coverage when aggregation relationships need to be
thoroughly tested. For example, consider using the all-defs
criteria, which requires that for each de�nition a path to at
least one reachable use is exercised. A simple path that cov-
ers the def and one use of a �eld will satisfy this coverage
requirement. But several di�erent objects could be associ-
ated with this one �eld and the context in which they are
de�ning and using the �eld will not be taken into consid-
eration when using this criterion. If we try to strengthen
the criterion by using the all-uses criterion, this criterion
requires that for each de�nition, paths to all reachable uses
are exercised. In this case, we have no means of determining
the di�erent contexts associated with the de�nition of the
�eld. In other words, there is no association with the object
whose state changes due to the de�nition of one of its �elds.
By providing di�erent levels of context through cdus, we are
able to provide better coverage in terms of objects and their
related �elds.

7. CONCLUSIONS AND FUTURE WORK
The main contribution of this paper is the introduction of

the concept of contextual def-use associations. Our de�ni-
tion of contextual is based on the object aggregation rela-
tion. We show how di�erent context levels can be achieved
with minor changes to the underlying program representa-
tion and algorithms for computing contextual def-use asso-
ciations. One major application for this work is in software
testing | both for increasing test coverage and focusing on
critical combinations of method invocations.
We are currently trying to run larger programs through

our implementation in order to better understand the char-
acteristics and implications of contextual def-use chains. We
are also investigating techniques to remove cdus that are cur-
rently included, but can be shown to be infeasible based on
analyzing more precise type information. Lastly, we are in-
vestigating other possible applications of contextual def-use
associations.

8. REFERENCES
[1] Roger Alexander and A. Je�erson O�utt. Analysis

techniques for testing polymorphic relationships. In
TOOLS USA, 1999.

[2] Mei-Hwa Chen and Howard M. Kao. Testing
object-oriented programs - an integrated approach. In
International Symposium on Software Reliability
Engineering, 1999.

[3] Mary Jean Harrold and Mary Lou So�a. E�cient
computation of interprocedural de�nition-use chains.
ACM Transactions on Programming Languages and
Systems, 16(2):175{204, March 1994.

[4] M.J. Harrold and G. Rothermel. Performing Data
Flow Testing on Classes. In Proceedings of the
Symposium on the Foundations of Software
Engineering, 1994.

[5] M. Rinard et. al. FLEX.
www.ex-compiler.lcs.mit.edu, 2000.

[6] John D. McGregor, Brian A. Malloy, and Rebecca L.
Siegmund. A Comprehensible Program Representation
of Object-Oriented Software. Annals of Software
Engineering, 1996.

[7] A. Orso. Integration Testing of Object-Oriented
Software. PhD thesis, Politecnico Di Milano, 1999.

[8] S. Rapps and E. Weyuker. Selecting Software Test
Data Using Data Flow Information. IEEE
Transactions on Software Engineering, 11(4):367{375,
April 1985.

[9] James Rumbaugh, Ivar Jacobson, and Grady Booch.
The Uni�ed Modeling Language Reference Manual.
Addison-Wesley, 1999.

[10] A. Souter and L. Pollock. OMEN: A Strategy for
Testing Object-Oriented Software. In Proceedings of
the International Symposium on Software Testing and
Analysis, August 2000.

[11] A. Souter, L. Pollock, and Dixie Hisley. Inter-class
Def-Use Analysis with Partial Class Representations.
In Proceedings of the ACM Workshop on Program
Analysis For Software Tools and Engineering,
September 1999.

[12] J. Whaley and M. Rinard. Compositional Pointer and
Escape Analysis for Java Programs. In Proceedings of
OOPSLA, November 1999.

19

