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Chapter 1

INTRODUCTION AND BACKGROUND

Parallel processing is an important design strategy in modern high-performance

computing, but applications with unpredictable and dynamic data access patterns

(i.e., emphirregular applications) are diÆcult to parallelize and to optimize for paral-

lelism. Multithreading has shown promise as a method of improving the performance

of irregular applications. In order to improve our understanding of how to best par-

allelize and optimize irregular applications, we must gather pro�ling information

about these applications at runtime. This thesis investigates the problem of provid-

ing pro�ling information for multithreaded programs on the EARTH multithreaded

architecture.

1.1 Parallel Processing

Many problems in modern computer science contain several di�erent tasks

which have varying levels of dependencies on each other. The algorithm in Figure

1.1 is comprised of four interrelated steps.

Step 1 has no dependencies on the other steps. We must, however, complete

Step 1 before proceeding to Steps 2 and 3, because these steps rely on the products

of Step 1. We �nd that Step 4 also must wait for all three of the previous steps to

complete.

There is, however, no reason that Step 3 must wait for Step 2 to �nish. If we

have two knives and a means for holding two slices of bread simultaneously, we can

do Steps 2 and 3 at the same time (in parallel). If all steps take the same amount

8



To make a peanut butter sandwich:

1. Get two slices of bread and open the peanut butter jar.

2. Spread peanut butter on slice 1.

3. Spread peanut butter on slice 2.

4. Put the slices together and eat.

Figure 1.1: An algorithm for making a peanut butter sandwich.

of time, we have now �nished making our sandwich in 3/4 of the time it would have

taken without parallelism.

Computer programs also often contain steps which can be executed in par-

allel, but many computers are capable of executing only one step at a time. Multi-

threaded Architectures [1, 3, 5, 6, 9, 19, 20, 21] are one class of computing machines

which are designed to execute parallel programs. Individual sequences of sequen-

tial steps are called threads or strands, and the process of dividing a program into

threads by identifying the data-implied boundaries between threads is known as

thread partitioning. Threads which rely on these data produced by other threads

are said to have data dependencies on those other threads. Some multithreaded

systems create non-preemptive threads; in the model that I focus on in this thesis,

a thread runs from beginning to end without interruption by any other threads.

1.2 Irregular Applications

All computer programs use data stored in some sort of computer memory,

such as random access memory (RAM), magnetic disk, and CD-ROM. Many pro-

grams will access this data in a predictable pattern that will not change unpre-

dictably during execution of the program. An example of such an application is

matrix multiplication, shown in Figure 1.2 (adapted from [22], p. 532).

9



#define N 1000

void matrix_multiply(int a[N][N], int b[N][N], int c[N][N])

{

int i, j, k;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

for (k = 0, c[i][j] = 0; k < N; k++)

c[i][j] += a[i][k] * b[k][j];

}

Figure 1.2: A regular application: matrix multiplication.

Because the data access patterns of such applications are mostly static, com-

pilers can identify these patterns without running the program, and perform opti-

mization on these programs to improve their performance. These kinds of programs

are called regular applications.

Irregular applications are applications with data access patterns that cannot

be reliably predicted before the program is run. Because these patterns cannot be

deduced by the compiler, the compiler is often unable to apply optimizations which

might improve the program. Other methods must be used to obtain optimization

clues for this class of applications.

1.3 Compilers and Optimization

Compilers are tasked not only with the translation of a program from a

language usable by humans to one understood by computer hardware, but also with

the job of analyzing a program for ineÆciencies and improving the program by

removing them.

Modern computer programs are often complicated and consume signi�cant

computing resources (CPU time or memory) when executing. The goal of com-

piler optimization is to enable compilers to minimize the time or space required to

10



/* this function will never execute */

void foo()

{

printf("Hi! I'm function foo.\n");

}

/* just print a message and exit */

int main()

{

printf("Hello, world!");

exit(0);

/* this line also never executes */

foo();

}

Figure 1.3: Sample program containing code which is never executed.

execute programs. Optimizing compilers generally do their work by applying trans-

formations to (an intermediate form of) the programmer's source code which, for

example, make it more amenable to the underlying hardware, reduce redundancy,

or eliminate code that is never executed.

It is essential that the code produced by an optimizing compiler function

identically to the code provided by the programmer. This implies that the compiler

must be able to deduce information from the program's code about how the program

will function while it is running. Consider the example in Figure 1.3.

If the compiler is able to correctly determine that function foo() will never

execute, it can remove the call, and if this is the only call to foo(), the compiler

can completely remove the function from the program before the �nal translation

to machine code.

Some programming languages allow the programmer to give \hints" to the

compiler about optimizable features. The C code

11



const int x;

allows the programmer to inform the compiler that the value of x will not

change during the execution of the program, which then allows the compiler to per-

form certain optimizations based on this information. It is not possible, however,

for a programmer to completely specify such information. Furthermore, the pro-

grammer may be unaware of information which would be of use to the compiler,

possibly because the programmer is not familiar with the underlying hardware ar-

chitecture or because the program is large and the programmer cannot mentally

trace all of the uses of the variable x in the code. In addition, many optimizable

features of programs are due to the ineÆciencies introduced by the �rst few phases

of the compiler, are not due to bad programming, and are not even visible at the

user's level.

1.4 Pro�ling

Often, programmers want information about how parts of the code were ex-

cercised during a run of the program with a particular data set. Information about

the execution of a program can be gathered if the programmer inserts explicit com-

mands to the code, for example: \When function foo() is called, print a message

on the console." While this will allow the user to determine that foo() has begun

to execute, this method is cumbersome, as the programmer must remember to in-

sert these calls, and then must usually remove them before the �nal version of the

program is compiled.

Software tools called pro�lers can be used to automatically add such com-

mands into a program; this technique is called code instrumentation. Several tools

which can be used to implement pro�lers are freely available, such as gprof [12, 13],

ATOM [23], and EEL [18]. Aside from gathering function call information, many of

these tools can also monitor the values of memory locations and collect other useful

12



data. Programs can be instrumented at the source code level, intermediate (internal

to the compiler) level, assembly language level, or binary level.

Information gathered using a pro�ler can also be used by a compiler to apply

program-speci�c optimizations in a process called pro�le-guided optimization. Such

techniques have been used, for example, to eliminate some redundancy in programs

[15] and remove code which never executes [14]. Pro�ling can also be used to iden-

tify program variables whose values do not change frequently, allowing the compiler

to apply some optimizations as if these variables were constants [7]. With pro�ling

information, the optimization phase of compilation can concentrate expensive opti-

mization techniques on \hot spots" in the code (those areas of the program which

are executed most frequently).
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Chapter 2

PROBLEM AND MOTIVATION

Parallel processing has shown promise as a method of solving many compu-

tationally complex problems, and several systems capable of parallel execution have

been constructed in the last decade [1, 3, 5, 6, 9, 19, 20, 21]. One design issue in the

construction of such systems is the increased burden to the user; if parallel systems

are more diÆcult to use than standard sequential computer systems, fewer people

will be able to take advantage of the opportunities a�orded by parallel execution.

Thread partitioning, in particular, is diÆcult for programmers accustomed to the

sequential execution model. This may be because the data dependencies between

potential threads are complex, or simply because parallelizable components of a task

are not always easily identi�able. It is thus useful to remove as much of the burden

of thread partitioning as possible from the user. The EARTH-C compiler system,

described below, attempts to achieve this goal by allowing the user to provide some

information about possible parallelism, but actually performing the parallelization

tasks in the compiler.

2.1 The EARTH Multithreaded Architecture

The EARTH (EÆcient Architecture for Running THreads) parallel archi-

tecture was developed at McGill University and continues to be developed at the

University of Delaware to study parallel architecture design and compilation issues.

The EARTH architecture, described in detail in [17], provides for building a multi-

processor multithreaded machine from o�-the-shelf components such as individual

14



PCs by linking the machines (called nodes) via a network such as Ethernet (see Fig-

ure 2.1). Because each node has its own memory (and thus its own copy of global

variables), it can be diÆcult to make sure that the value of a variable on node 1 is

the same as the value of the same variable on, say, node 5. To help resolve these

diÆculties, each node in the system has two processors; one is dedicated to han-

dling synchronization and data requests (the synchronization unit or SU) and one

is dedicated to actually running parts of the program (the execution unit or EU).

One node is designated Node 0 ; the �rst thread of the program's MAIN() function

runs on Node 0, and Node 0 maintains the master copies of global variables.

EARTH Threads are non-preemptive; that is, once a thread begins running,

that thread will continue running uninterrupted until it has completed.

2.1.1 Languages for Programming EARTH

Two dialects of the C programming language have been designed for use on

EARTH. One of these, called Threaded-C, requires the programmer to speci�cally

set up threads and ensure that all data dependencies are met before a given thread

can begin execution [16, 24]. In Figure 2.2, the RSYNC call is used to alert wait-

ing threads that this instance of the print hello function has completed. The

other language, EARTH-C, allows the programmer to give hints to the compiler

about which parts of the program may be parallelized, but places the burden of

thread partitioning, handling data synchronization, and other low-level tasks on the

compiler. Figure 2.3 shows a simple EARTH-C program in which the f^ and g^

operators are used to inform the compiler that the operations in this block of code

do not have any dependencies on each other.

Memory addresses in EARTH are grouped into two types: local and global.

The local pointer types are identical to standard ANSI C pointers and are used

to access memory on the local node. Global pointers (declared with the GLOBAL

15
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Figure 2.1: An EARTH system consisting of four nodes.
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#include <stdio.h>

THREADED print_hello(SPTR done)

{

printf("node %d: Hello World!\n", NODE_ID);

RSYNC(done);

END_FUNCTION();

}

Figure 2.2: Sample code written in Threaded-C.

replicated int i1, i2;

int foo()

{

return 0;

}

void main (void)

{^

i1 = foo();

i2 = foo();

^}

}

Figure 2.3: Sample code written in EARTH-C.
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Threaded-C Compiler

EARTH-C Compiler

McCAT Compiler

EARTH-C

Threaded-C

ANSI C w/EARTH RTS calls

Binary Program

Figure 2.4: The EARTH compilation system.

primitive) contain information about both the memory location to be accessed, and

which node contains the data being addressed.

2.1.2 Compilation and Execution on EARTH

The EARTH-C compiler is used to produce Threaded-C code from EARTH-

C source code. The resulting Threaded-C code is run through the Threaded-C

preprocessor, which translates Threaded-C into ANSI C with calls to the EARTH

runtime system (RTS), which handles thread creation and management as well as

18



communication (data requests and synchronization) while the program is executing.

The system C compiler (e.g. gcc) is then used to compile this ANSI C code into an

executable binary �le (see Figure 2.4).

When the program is invoked, the �rst thread of the MAIN() function begins

executing on Node 0. More threads, local (running on the same node) or remote

(running on a di�erent node), may be spawned from this initial thread via calls

to the EARTH RTS. Console output from threaded programs (e.g. output result-

ing from calls to printf()) is directed to a �le in the current directory named

etc.PROCESS.NODE ID where PROCESS is the process number of the executing

program and NODE ID is the node number of the current node.

EARTH hardware is not yet available, but an emulation system has been

constructed to study the implications of the EARTH model. This emulation system

is implemented on a MANNA machine (EARTH-MANNA), a network of Sun Ultra-

Sparcs running Solaris (EARTH-SMP), and a network of PCs running Linux/Beowulf

(EARTHQuake). In these emulations, each machine on the network functions as one

EARTH node.

2.2 The Need for Pro�ling

In order to evaluate the usefulness of the EARTH model of multithreading,

it is necessary to examine the behavior of programs at runtime. The thread par-

titioning algorithms have a direct e�ect on the performance of programs in this

environment. By partitioning the work to be done, the compiler e�ectively dictates

the degree of parallelism (and therefore the degree of utilization of the EARTH

system) occurring in a program.

Figure 2.5 shows a possible situation in which several threads (dark blocks)

experience varying amounts of latency due to, for example, varying load on the

EARTH system. Overlapping blocks illustrate situations in which there are threads

running concurrently on di�erent EARTH nodes, and gaps between the issuance of

19
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Figure 2.5: An example of thread distribution and network delay on the EARTH
architecture.

a thread spawn request and the actual beginning of a block indicate network or RTS

delay.

It is not eÆcient to simply partition the program into as many threads as

absolutely possible, because the network used to connect EARTH nodes introduces

considerable latency when a program accesses remote data. We must also consider

the number of remote accesses to data and the size of the data transferred if we are

to get a clear picture of the e�ectiveness of the multithreading system.

On a traditional sequential architecture, runtime information can often be

obtained via a pro�ler; software packages are also available which allow the con-

struction of customized pro�ling tools [23, 18]. None of these tools is compatible

with the EARTH architecture and its extensions to the C language, however. Also,

because the EARTH emulation system is currently available on several hardware

platforms, it is desirable that the EARTH pro�ling tool be portable from one hard-

ware (and operating system) platform to another.
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2.3 Thesis Research Overview

Agrawal, Gao, and Pollock [2] have been examining optimizations for the

EARTH-C compiler which require that analysis tools for EARTH programs be con-

structed. In this thesis, I present the design and implementation of a portable

Threaded-C pro�ler designed to be used as part of their project. I also discribe the

construction of a useful benchmarking application for EARTH and present insights

into directions for future work in the area of pro�ling to evaluate the EARTH system

and compiler optimizations.
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Chapter 3

A BENCHMARKING APPLICATION FOR EARTH

3.1 Motivation

In order to identify areas needing improvement in the EARTH compilers, it

is neccessary to have a selection of EARTH-C or Threaded-C programs to compile

and use to gather information about the code output by the compiler.

A small collection of such programs already exists [17]; however, I also im-

plemented a parallel benchmark based on the CTSP originally described by Amaral

and Gosh, which has the potential to be particularly useful for benchmarking various

loads on the multithreaded system [4].

3.2 The Traveling Salesman Problem

The Traveling Salesman Problem is a problem often considered by computer

scientists in which one salesman must visit some number N of cities on a business

trip. The general idea is to �nd the shortest route which the salesman can take

that will visit all of the cities and return him to his city of origin. In general, this

problem is considered to be NP-complete [8, 11].

3.2.1 The Contemporaneous TSP

The Contemporaneous TSP (CTSP) [4] is a modi�cation of the classic TSP

problem such that the salesman's schedule now includes cities in several discrete

geographic regions (states or countries); the salesman is restricted to entering and

leaving each state only once.
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The state-to-state path is speci�ed in advance, and cities are generated ran-

domly according to a Gaussian distribution with a user-speci�ed mean and standard

deviation. It is assumed that the transition between states is made at the midpoint

of the border between the two states.

3.3 The EARTH Contemporaneous TSP

The EARTH Contemporaneous TSP (ECTSP) is an adaptation of the CTSP

to the EARTHmultithreaded environment, and is coded in Threaded-C. The ECTSP

represents the CTSP problem as a graph in 2-dimensional space where each city ci

is a point (xi; yi), and the distance di;i+1 between cities ci and ci+1 is given by the

standard distance formula:

di;i+1 =
q
(xi+1 � xi)2 + (yi+1 � yi)2 (3.1)

It is possible to consider that the solution to the problem is an ordering of

the cities c0 : : : cN�1 such that the total distance D given by Eqn. 3.2 is minimized.

The path sought is thus one of the N ! possible orderings of the cities.

D =
NX
i=0

di;i+1 (3.2)

Because the entrance and exit points for each state are known in advance to

be the midpoints of the states' borders, and because the salesman must enter each

state only once, the path in each state can be computed independently of the paths

in all other states.

3.3.1 The Greedy Algorithm

The Greedy algoritm is the simpler of the two algorithms used in the ECTSP;

it is not guaranteed to identify a shortest path. The algorithm is outlined in Figure

3.1 and operates in O(n � s) time, where n is the number of cities in a state and s

is the number of states in the tour.
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1. Move to the city closest to the midpoint of the state's incoming
border.

2. Identify the city closest to the current city and move to it.

3. Repeat Step 2 until all cities in the state have been visited.

4. Move to the midpoint of the state's outgoing border.

Figure 3.1: The Steps in the ECTSP Greedy Algorithm.

3.3.2 The Branch-and-Bound Algorithm

The Branch-and-Bound algorithm is a more sophisticated algorithm which

is guaranteed to �nd a shortest path through a state. It attempts to reduce the

number of permutations which must be searched by eliminating groups of paths

which are longer that some previously-determined path. The implementation of the

ECTSP Branch-and-Bound algorithm is adapted from Way [25] and illustrated in

Figure 3.2. Here P is the permutation under consideration, P[c] is the cth city in P,

i is a state variable used to track the path under consideration, and S is the shortest

path found so far.

3.4 Implementation

The ECTSP �rst executes the Greedy algorithm to determine a possible

shortest path in each state, and then runs the Branch-and-Bound algorithm, using

the path identi�ed in the Greedy algorithm as the initial shortest path. In both

algorithms, each state is searched in a separate thread. The node on which a thread

executes is determined by the EARTH RTS built-in load-balancing system. Each

state thread executes several BLKMOVE RSYNCs to obtain local copies of needed data

structures (states, cities, and borders), runs the appropriate algorithm, and executes

another BLKMOVE RSYNC 1 to return the identi�ed path to Node 0.

1 The BLKMOV RSYNC EARTH primitive is used to access data on a (possibly)
remote node.
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3.5 Summary

The ECTSP was useful as a study of the Threaded-C language and a begin-

ning point from which to consider the pro�ling issues introduced by the EARTH

model of multithreading. The ECTSP is also useful as a 
exible benchmark for the

EARTH system, because the load it produces on a system varies greatly according

to the input TSP parameters.
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P = (1)

Begin:

Does P visit all cities?

Yes

i = c

P[c] += 1
Prune.

cost(P) > cost(S)

Shorter Path.

S = P

Next Permutation.

Done.

S is shortest path.

Is P the last permutation?

Yes

No

No

No

Yes

Figure 3.2: The ECTSP Branch-and-Bound Algorithm
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Chapter 4

DESIGN OF A PROFILING SYSTEM

4.1 Overall Design

The EARTH Threaded-C pro�ling system is designed to gather information

about the EARTH events which occur when a parallel program is run on an EARTH

system. While not all possible events are currently pro�led, it is desirable to de-

sign the pro�ling system to be easily extensible to gather new information, and to

be 
exible so that gathered information can be used for several di�erent types of

analysis and displayed in several di�erent formats.

The EARTHQuake (Linux/Beowulf) implementation of EARTH was chosen

as the host platform for pro�ler development because it was the most stable at the

beginning of the project. It had originally been hoped that the pro�ler could be

implemented with an already-available instrumentation or pro�ling package such

as ATOM [23] or EEL [18], but neither of these were available for the Intel i386

architecture of EARTHQuake; porting either to i386 was also judged to be extremely

nontrivial. One reason for this is the necessary adaptation to the variable-length

instruction word of a CISC i386 machine, which would require signi�cant redesign.

Because a pro�ler designed on EARTHQuake should also eventually be portable to

the EARTH-SMP or another architecture, it was decided that any pro�ling strategy

involving binary code manipulation was inappropriate.

This decision requires the code to be instrumented before compilation is com-

plete. It is also desirable that the burden of implementation not be placed on the
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user of the pro�ling tool. One solution which meets all these criteria is to modify

the EARTH compilers to instrument code, gather data at runtime, and construct an

analysis tool to analyze this data after runtime. Because the lexical and syntactical

elements of the EARTH compilers are generally portable, any pro�ling modi�cations

made in those elements is likely to be portable as well.

It was decided to implement pro�ling at the Threaded-C level rather than

the EARTH-C level because EARTH-C is translated into Threaded-C before com-

pilation, so a Threaded-C implementation allows us to capture information about

EARTH-C as well, without implementing two separate systems. This system also

gives the programmer a modicum of control over which functions will be pro�led by

pro�ling only those source �les which contain functions to be pro�led.

The system consists of two tools: an instrumentation program which inserts

pro�ling output calls into a Threaded-C application before compilation, and an

analysis tool which analyzes the resulting output to create a pro�le of the program.

The instrumentation tool, tcinst (Threaded-C INSTrumenter), is written in PERL,

while the analyzer, tcprof (Threaded-C PROFiler), is written in standard C++.

The interaction between these tools and the rest of the EARTH system is illustrated

in Figure 4.1.

Because both applications are written in standard languages found on most

computer platforms today, it seems likely that they will be portable to other plat-

forms in the future. Also, because they are implemented as standalone applications

in common computer languages, it is likely that the pro�ling system will be more

easily extended to meet future design goals than a similar system implemented,

for example, inside the EARTH-C or Threaded-C compilers, which are much larger

projects with much steeper learning curves.
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Threaded-C

Threaded-C w/profiling output calls

ANSI C w/EARTH RTS calls

Binary Program

Runtime Output

Human-Readable Profile

tcprof Profile Analysis Tool

EARTH RTS

Threaded-C Compiler

tcinst Threaded-C Instrumenter

Native C Compiler

Figure 4.1: The pro�ling system components.

4.2 Events to pro�le

Because this pro�ling system was built for use by compiler writers, EARTH-

C programmers, and Threaded-C programmers, the events to be examined by the

pro�ler were speci�ed for these targeted users. These events include:

� The number of threads executed on each node and dependencies between these

threads

� The number of block moves (i.e., the number of times a consecutive block of

memory is accessed from a possibly remote node)
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EARTH Primitive Type

THREADED Thread Boundary Marker
THREAD X Thread Boundary Marker

END THREAD() Thread Boundary Marker
RETURN() Thread Boundary Marker

INIT SYNC() Syncronization
SYNC() Syncronization
RSYNC() Syncronization

BLKMOV SYNC() Remote Data Access
BLKMOV RSYNC() Remote Data Access
GET SYNC X Remote Data Access
GET RSYNC X Remote Data Access
DATA SYNC X Remote Data Access
DATA RSYNC X Remote Data Access

TO LOCAL Pointer Cast
TO GLOBAL Pointer Cast

Table 4.1: The EARTH primitives examined by the pro�ling system.

� The number of remote and local loads and stores

� Value pro�ling of pointer variable values (to be used in determining which

\may alias" pairs computed by the compiler are actually aliased at runtime)

Information about threads and dependencies will be useful for improving the

thread partitioning algorithms used in the compilers. Loads, stores, and blockmoves

are signi�cant because of the latency introduced by the EARTH RTS and the under-

lying physical network; by optimizing for fewer remote operations, we can improve

the performance of an EARTH-C or Threaded-C application. Information about

aliases will allow us to perform standard alias optimizations and to study the e�ects

of aliasing on the EARTH model.

The speci�c EARTH primitives examined by the system are listed in Table

4.1, and can generally be grouped into four classes: Thread Boundary Markers, Syn-

cronization calls, Remote Data Access calls, and Pointer Casts. Thread Boundary
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Markers identify the beginnings and ends of threads, and are pro�led to provide

information on how many threads are executing and which pro�led events occur

in which threads. Synchronization calls are those used to manipulate the EARTH

synchronization unit and enable threads for execution. Remote Data Access calls

allow a thread to access (load or store) data on a remote node, and also function as

Synchronization calls by sending synchronization signals when they have �nished the

remote operation. Pointer Casts are used to convert local addresses into addresses

on a remote node (or vice versa), and are often used to specify data locations ac-

cessed via the Remote Data Access primitives. For more information on each of

these primitives, the reader is referred to [24].

4.3 The Instrumentation Tool

The tcinst instrumentation tool is written in PERL and makes extensive use

of the PERL regular expression facilities to identify Threaded-C primitives. tcinst

reads a line of source code at a time from a speci�ed �le (or stdin) and scans for

strings which match those of the EARTH primitives speci�ed in Figure 4.1.

When a primitive is found, tcinst inserts a printf() call which outputs

the type of primitive found and the arguments given to the primitive in the original

call for use in analysis. tcinst then adjusts the line numbers (via the standard C

#line preprocessor directive) in the pro�le-enabled source code to match those in

the unpro�led code.

With the execption of thread beginning primitives (THREAD X and the THREADED

keyword), these pro�ling output calls are inserted just before the call in the original

Threaded-C code to insure that the values of arguments do not change between the

printing of the pro�ling information and the execution of the EARTH primitive.

The calls for thread beginning primitives are located after the calls and any related

variable declarations, because ANSI C requires that all variable declarations occur

before function calls.
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Each pro�le output statement begins with a pro�le header containing a tag

marking the line as a pro�le statement, the current �lename, line number, function

name and thread number containing the statement being pro�led. These output

statements are then analyzed with the analysis tool described below.

4.4 The Analysis Tool

As discussed in Section 2.1.2, the EARTH RTS redirects standard output

from each node to a �le in the current directory. Pro�ling information is viewed and

analyzed with the help of the pro�ling analysis tool tcprof (Threaded-C PROFiler).

4.4.1 Design

tcprof is written in C++ and uses a di�erent C++ class to represent each

type of pro�lable statement. The thread class, for example, contains a list of

pro�lable events which happened during a run of that EARTH thread. A list of

available classes is given in Table 4.2.

Figure 4.2 gives a general overview of the functioning of the tcprof analysis

tool. This tool uses flex to scan through the output of the program to be analyzed

and search for pro�ling output statements (statements beginning with the pro�le

header). Tokens identi�ed by flex are then passed to a syntactic analysis unit

built using bison [10] which identi�es the EARTH primitive which this output

statement pro�les and instantiates a member of the appropriate event class to hold

the information gathered.

4.4.2 Analysis

Analysis in tcprof is implemented via the analysis class. All classes which

inherit from event have an analyze() function which accepts a reference to an
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Runtime Output

Profile
Human-Readable

Groups tokens together
into complete statements
about a profiled primitive.

Analyzes profiled events
to produce a picture
of how the program executed.

Creates a member
of the appropriate
class to hold this data
and passes it on 
to the analysis unit.

Breaks the output
into tokens recognized
by the Syntactic Analyzer.

Analyzer
Lexical 

Analyzer
Syntactic 

Analyzer
Profile

Figure 4.2: Internal functioning of the tcprof analysis tool.
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Class Name Description

event Root of the event heirarchy; all classes below inherit from
this class.

function Container class to group threads from the same threaded
function. (Currently not used).

thread An instance (execution) of a thread. Contains a list of
events which occurred during the run of this instance of
this thread.

blockmove local sync A single BLKMOV SYNC call.
blockmove remote sync A single BLKMOV RSYNC call.

local sync A single SYNC call.
remote sync A a single RSYNC call.

get local sync A single GET SYNC X call.
get remote sync A single GET RSYNC X call.

init sync An INIT SYNC call.
to local A cast from the GLOBAL pointer type to a local pointer

type.
to global A cast from a local pointer type to the GLOBAL pointer

type.
data local sync A single DATA SYNC X call.
data remote sync A single DATA RSYNC X call.

Table 4.2: The C++ classes used to represent EARTH primitives in tcprof.

analysis object and modi�es that object to re
ect the information gathered by

pro�ling.

Currently, analysis consists of simply counting the number of times each

event occurs when the program is run. The events can then be printed in a simple

indented call graph format.

34



Chapter 5

USE OF THE PROFILING TOOL AND FUTURE

DIRECTIONS

5.1 A Pro�ling Study

This section describes a short study conducted with the Threaded-C pro�ling

system on sample Threaded-C programs. These applications (with the exception of

the ECTSP, described in 3) are example programs distributed with the EARTH

system or are from the EARTH Benchmark Suite described in [17]. Application

sizes are given in lines of source code before instrumentation.

Program Size # Threads Remote Data Accesses Pointer Casts

fib1 57 267 177 355
fib2 54 63 41 42
hello2 49 0 3 0
matrix2 252 9298 0 16

Table 5.1: Sample information gathered via tcinst and tcprof.

5.2 Summary

This thesis has described pro�ling issues introduced by the EARTH model of

multithreading, and described the implementation of a 
exible source-level pro�ling

system for use with Threaded-C on EARTH.

Major contributions include:
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� Implemented a benchmarking program in Threaded-C.

� Designed and implemented a source-level Threaded-C instrumentation utility

in PERL.

� Designed and implemented a 
exible, extensible pro�le analysis tool in C++

which analyzes the pro�le information collected by a program instrumented

with the above instrumentation tool.

� Demonstrated the usefulness of the pro�ling system.

5.3 Future Directions

Much of the information gathered by the pro�ling system is not yet used in

the analysis phase (see Section 4.1). This information should be considered and

used to build more comprehensive pro�les of applications, so that these pro�les can

be used to guide improvements to the EARTH compilation systems.

The system attempts to gather pro�ling information about pointer variable

values which are used as arguments in EARTH primitives. This information could

eventually be used to examine aliasing in order to improve the compiler's handling

of \may-alias" pairs.

I have also tried to collect information which can be used to determine the

data dependencies between running threads by gathering data about INIT SYNC

and the various synchronization calls (including global pointer values for those syn-

cronization events which use them). This information could be used to build a

runtime thread dependency graph, for example.

Because the tcinst instrumentation tool is currently unable to recognize

valid C statements which span more than one line, and because it is unable to rec-

ognize valid C expressions other than variable names or constants used as arguments

to EARTH Threaded-C primitives, restrictions are placed on the textual format of
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the programs to be pro�led. These restrictions are onerous, as they require the user

of the pro�ling system to visually inspect each line of source code in the application

to be pro�led. More development work on tcinst should be done to address these

inadequacies. One possible means of addressing these shortcomings could be the

reimplementation of tcinst in C, using flex and bison to recognize Threaded-C

syntax more e�ectively than can be accomplished with regular expressions in PERL.

Much of the needed code (e.g. bison grammar descriptions) could be borrowed from

the existant Threaded-C preproccessor.

While the current source-code instrumentation scheme may be useful for

gathering counts, simple pointer analysis and thread dependency information, sev-

eral interesting items of information are simply not available at this level. Low-level

hardware instruction scheduling and instruction counting is obviously not available,

for example. One option for such a scheme might be to adapt or construct a binary-

editing tool such as ATOM or EEL for EARTH, but this is likely to be diÆcult to

port across the several platforms used for EARTH development.

Another alternative may be available: adapt the GNU gprof pro�ler to un-

derstand Threaded-C and EARTH-C syntax. Because EARTH-C and Threaded-C

are eventually compiled as ANSI C (see section 2.1.2 on page 18), and because the

source code for gprof is readily available, it seems likely that the underlying C

compiler and gprof could be adapted to pro�le EARTH applications at the binary

level.
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Appendix A

USING THE THREADED-C PROFILING SYSTEM

A.1 Instrumenting a Threaded-C Program

To instrument a Threaded-C source �le, run the tcinst instrumentation

utility on the Threaded-C �le with the command:

tcinst.pl filename:c

This will produce an instrumented Threaded-C �le named filename p:c in

the current working directory.

A.2 Compiling an Instrumented Source File

Instrumented source �les can be compiled with the Threaded-C compiler

etcc via:

etcc filename p:c

A.3 Executing an Implemented Application

The resulting executable can then be run via etc run as with all other

Threaded-C applications:

etc run -n num nodes executable args

The compiled application will now run as usual, and will write pro�ling in-

formation to stdout.
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A.4 Using Pro�le Information

Pro�ling output from the application is found mixed with normal (non-

pro�ling) output in the �les created for stdout by the EARTH RTS. All pro�l-

ing statements are marked with %PROFILER, and thus pro�ling information can be

removed from the �le via

grep -v "%PROFILER" filename

This output is then parsed and analyzed by the Threaded-C pro�le analyzer

tcprof. A simple script, gen report, has been provided which performs the pro�le-

output separation and analysis steps as one command line:

gen report filename
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Appendix B

A SAMPLE PROFILING SESSION

This appendix demonstrates a sample session instrumenting and pro�ling a

Threaded-C application. The application used here is a variant of the classic \Hello,

World!" program from computer science texts. This variation is stored in the �le

hello2.c.

B.1 Instrumentation

We instrument the code, which produces hello p.c.

earthquake[501] [~]> cd examples/hello2

earthquake[502] [~/examples/hello2]> ls

Makefile hello2.c session.txt

earthquake[503] [~/examples/hello2]> tcinst.pl hello2.c

earthquake[504] [~/examples/hello2]> ls

Makefile hello2.c hello2_p.c session.txt

B.2 Compilation

Now we invoke the etcc Threaded-C compiler to create the hello p exe-

cutable �le.

earthquake[505] [~/examples/hello2]> etcc hello2_p.c

earthquake[506] [~/examples/hello2]> ls

Makefile hello2.c hello2_p hello2_p.c session.txt
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B.3 Running the Application

The hello p binary is run via the EARTH etc run RTS system. Its output

can then be found it the etc.21064.0 �le.

earthquake[507] [~/examples/hello2]> etc_run -n1 hello2_p

Starting processes on remote nodes...done.

Initializing the network...done: 0 s

Executing user code...done.

earthquake[508] [~/examples/hello2]> ls

Makefile etc.21064.0 hello2.c hello2_p hello2_p.c

session.txt

B.4 Pro�ling

Now we invoke the tcprof pro�le analysis tool via the gen report.sh script

to generate our report.

earthquake[509] [~/examples/hello2]> gen_report.sh etc.21064.0

Analysis:

0 BLKMOVE_RSYNC()s

0 BLKMOVE_SYNC()s

1 RSYNC()s

0 SYNC()s

0 TO_GLOBAL()s

0 TO_LOCAL()s

0 INIT_SYNC()s

0 GET_SYNC()s

0 GET_RSYNC()s

0 DATA_SYNC()s

0 DATA_RSYNC()s

A total of 3 threads ran on this node.

Call graph:

Thread: File: hello2.c Line: 35 Function: MAIN Thread: 0

Thread: File: hello2.c Line: 17 Function: print_hello Thread: 0

RSYNC File: hello2.c Line: 19 Function: print_hello Thread: 0

Thread: File: hello2.c Line: 42 Function: MAIN Thread: 1

Done.
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Appendix C

GLOSSARY

Aliases Two pointer variables which point to the same location in memory are said
to be aliased. During compilation, a compiler may label a pair of pointer values
as a \may alias" pair, indicating that the pair may be aliased at runtime,
but it is impossible to guarantee that they will be aliased without further
information.

bison A freely available yacc implementation.

Irregular Applications Computer applications in which data access patterns can-
not be predicted before the application is executed.

lex A LEXical analysis program often used in compilers to break source code into
lexical units (called tokens) like keywords, numbers, and punctuation.

flex A freely available lex implementation.

Regular Expressions Many programming packages which are designed for text
processing (for example, lex and PERL) allow the programmer to specify
how to identify speci�c strings via a set of consistent patterns called regular
expressions.

PERL The Practical Extraction and Report Language. Originally designed to
produce summary reports from large text �les, PERL is a scripting language
with built-in facilities for regular expression matching and string processing.

printf() The standard function in the C programming language for printing text
on the system console.

Pro�ling A method of gathering information about how a computer program ac-
tually executes at runtime. This information often includes (for example) a
list of which subprograms are called at runtime and in what order they are
called.
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stdin,stdout Programs written in the C language by default read input from a
source called stdin (which is usually attached to the system keyboard) and
write output to a sink called stdout (which is usually attached to the system
console).

Value Pro�ling A pro�ling method which examines the runtime values taken on
by variables in a program.

yacc Yet Another Compiler Compiler. A tool often used in compilers to perform
syntactical analysis of source code �les.
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