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Abstract—In addition to learning good practices and reusing
code from mining code examples, programmers can be supported
in their learning and code improvement processes through nega-
tive, or poorly written, code examples. While it is challenging
to identify negative code examples automatically from within
source code, we leverage a key insight that the natural language
in questions that include code examples posted on forums can
provide adequate clues. In this paper, we describe an automatic
sentiment analysis-based technique for mining negative code
examples from developer question and answer forums along with
a technique to automatically mine negative sentiment indicators
commonly used by developers, which are used to drive the
sentiment-based technique.

I. INTRODUCTION

Programmers learning how to use a programming language
or an API often rely on code examples to support their learning
activities [1], [2], [3]. They also often seek code examples
to reuse for their current project. Thus, researchers have
developed techniques for automatically mining code examples
from various sources [4], [5], [6].

While it is well-known in educational psychology that good
examples are an efficient means of learning new concepts
[7], most people also learn from bad, or negative, examples.
Similarly, in programming, code examples known to exhibit
bad behavior can make good teaching tools. In the framework
of teaching and learning styles for core computer science cur-
ricular components as presented by the Pedagogical Patterns
Project, many of these patterns focus on the benefits of learning
from negative examples [8]. For example, in the ”Mistake”
pattern, ”students are asked to create an artifact such as a
program or design that contains a specific error. Use of this
pattern explicitly teaches students how to recognize and fix
errors.

In addition, as a programmer is developing code within
an IDE, it would be helpful to recognize poorly written code
segments and notify the programmer. Similarly, one could
build a tool that scans a project, identifies poor code segments
and suggests improved replacements. However, these uses of
negative code examples all rely on identifying negative code
examples.

Poorly written code is plentiful; almost every project has
some code segments that could be improved for efficiency,
readability or other properties in addition to potentially buggy
code. Current techniques for mining code examples for learn-
ing or reuse do not rate the quality of that code segment or
distinguish between good and bad examples. These techniques

can increase the chances that the code example is good for
learning or reuse by mining from sources they believe to be
overall good quality. There exist many analysis techniques
for judging the quality of code, including computing various
metrics such as cyclomatic complexity and code smell identifi-
cation, but these techniques are not always applicable to small
code segments used as examples.

In this paper, we present an automatic technique to mine
bad, or negative, code examples, in the form of poorly written
code segments. Throughout this paper, we consider a negative
code example to be a code segment that has at least one
of the following problems: throws an error/exception, has
a data race, terminates normally but does not achieve its
intended functionality (semantic/logic error), uses incorrect or
deprecated methods, is extremely inefficient, is insecure, or has
a platform/portability problem.

Instead of mining from code projects which would re-
quire then determining the quality of the mined example,
we leverage the insight that question and answer (Q & A)
forums such as Stack Overflow often include negative code
examples. Specifically, it is common for a question to contain
the code segment that the questioner is having problems
with, or wants help with replacing with a better strategy. The
question will be followed by answers that contain suggested
better ways to perform the same task. One could assume that
every code segment appearing in a question is a negative code
example; however, our analysis of Stack Overflow revealed
that this is not always the case, and this could lead to mining
negative code examples that are indeed positive, or good, code
examples. Thus, our approach applies sentiment analysis to
text in the questions containing the code segments presented
in the Q & A forum.

Sentiment analysis, also called opinion mining, is the anal-
ysis of natural language text to characterize the author’s opin-
ion of the document, sentence, or object being discussed [9].
An opinion is a positive, negative, or neutral sentiment, view,
emotion, or attitude toward some entity or object. Our hypoth-
esis is that the sentiment of the question author is an indicator
of whether a code segment in the question is a negative code
example. One could use a general purpose sentiment analyzer,
such as Python NLTK text classification, or to improve the
accuracy, train the sentiment analyzer on text from the intended
target documents, Stack Overflow entries [10]. In our initial
manual analysis of Stack Overflow entries, we observed that
there are many words and phrases, such as ‘infinite loop’ and
‘keep getting’, that indicate negative code examples, but are
not identified as negative sentiment indicators by general pur-



Fig. 1: Negative code example within Stack Overflow question.

pose sentiment analyzers. Thus, we developed a technique to
automatically mine negative sentiment indicators for software-
related Q & A forums to use for mining code examples, and
we compare using the customized sentiment indicators versus
a general purpose sentiment analysis in our evaluation.

The key contributions of this paper include:

• a sentiment analysis-based technique for mining neg-
ative code examples,

• a technique to mine negative sentiment indicators par-
ticularly used by software developers from software-
related discussions, and

• an evaluation and qualtitative analysis of the automatic
negative code example mining technique using preci-
sion and recall for a set of 240 human-judged Stack
Overflow entries containing code segments.

II. MOTIVATING EXAMPLES

The Stack Overflow question in Figure 1 exemplifies a
negative code example; this code throws an error upon exe-
cution. Without looking carefully at the code, a reader would
guess that there is a problem based on the preceding text that
contains the phrase “help me”. In addition, the text following
the code contains the word “error” and the phrase “please
help”. These words and phrases are examples of negative
sentiment indicators. In a PHP course, this code could be used
in a lesson on adding columns. Being able to recognize how to
avoid receiving unknown column errors will be very beneficial
in the learning process. From this example, the consequences
of using incorrect quotations and parenthetical order are able
to be evaluated and avoided later on during the coding process.
Also, from this example negative code segment, an IDE could
detect that the wrong type of quotations are being used when
adding the column, prompting the user that the current code
will result in an unknown column error.

Fig. 2: Code example (within Stack Overflow question) that is
not a negative example.

The code in Figure 2 shows another Stack Overflow ques-
tion that contains a code segment; in this case, not a negative
code example. Note that it can be inferred from the text that
the questioner is asking for help in understanding this code.
Upon observation, this code is not preceded or succeeded by
any text that one would consider a negative sentiment indicator.

Thus, while there are many code examples that appear in
Stack Overflow and other Q & A forums, naively mining all
code examples from questions that contain a code example and
classifying them as negative examples can lead to inappropri-
ate mislabeling. Our hypothesis is that the clues left in the
sentiment of the natural language text of the question can be
strong indicators of whether a code segment is poorly written.

III. APPROACH

With the increased use of online blogs, forums, news and
other documents such as movie and product reviews and travel
forums, has come the increased use of automatic techniques for
identifying subjective versus objective text and distinguishing
between positive, negative and neutral opinions. These tech-
niques, called sentiment analysis or opinion mining, are based
on natural language processing and the use of sentiment cues.

Our main goal is to explore ways to utilize negative senti-
ment indicators to use the opinion of the questioner to classify
code segments in Q & A forum questions as negative or oth-
erwise (i.e., non-negative). Our evaluation (see Section IV-B)
combined with our manual observation of developer Q & A
forum question text provides evidence that more precision
should be achievable by developing a set of negative sentiment
indicators customized for our goal of mining negative code
examples from software developer forums. Instead of manually
developing a set of customized negative sentiment indicators,
we took a data-driven approach, in which we mine them
automatically. The first subsection describes our methodol-
ogy for automatically identifying negative sentiment word or



phrase indicators for the purpose of identifying negative code
examples in developer forums. The second subsection explains
how to utilize those indicators to classify code segments in
forum questions as negative code examples.

A. Mining Negative Sentiment Indicators

Figure 3 depicts the phases of mining negative sentiment
indicators related to code examples. The input is a set of
software artifacts, and the output is a set of negative sentiment
indicators for mining opinions on code segments. We follow a
process shown to be successful in mining informative terms as-
sociated with genes by comparing the frequency of occurrence
of a term in the gene’s biomedical literature (query document
set) to its frequency of occurrence in documents about genes
in general (background document set) [11]. We first collected
a set of software artifacts to serve as the query document
set, which we believe should contain more natural language
words and phrases indicative of negative sentiment toward
a code segment. Similarly, we collected a set of software
artifacts to serve as the background document set, which we
believe should contain more general natural language related
to software, but not particularly with negative sentiment. The
hypothesis behind the approach to mining negative sentiment
indicators is that words and phrases that occur more frequently
in the query set when compared to the background set will also
occur with negative code examples in forum questions.

The query and background document sets are processed
similarly through the next few phases. We extract and stem
all n-grams, currently bigrams and unigrams. While we could
focus on mining single words (i.e., unigrams), our manual
observations of Stack Overflow text entries motivated us to
also mine collocations in the form of bigrams that correspond
to some conventional way of expressing a concept where the
words together have added meaning beyond the words taken
individually, e.g., infinite loop.

For each extracted n-gram, we compute its frequency of
occurrence in the query set and the background set, separately.
Stop words are removed to increase precision. At this point, we
have a set of n-grams with frequency information for both the
query set and background set. We then compute a term score
to compare the frequencies of occurrence of each n-gram in
the two sets. We rank the n-grams based on the score and
then categorize the n-grams as negative sentiment indicators,
or not, using a threshold. We describe each phase in detail in
the remainder of this subsection.

Query and Background Document Sets. The first design
decision is what set of software artifacts would be most likely
to contain negative sentiment indicators for code examples,
i.e., the query document set. We chose the query document set
to consist of a set of 150,000 Stack Overflow questions that
contain any code tag, indicating that the questioner included
at least one code segment. The intuition is that any question
containing code is most likely asking for advice about that
code, and thus the questioner believes it can be improved. The
query document set was drawn from 250,000 questions.

Initially, we used language-specific bug reports for C++,
Java, and Python as the query set. We expected that the
text contained in bug reports would discuss problematic code
features and would be suggestive of negative code examples.

Our initial experiments indicated that the bug reports as a query
set were very specific to the programming language, project
identifiers, and structures used in the associated projects, and
the mined negative sentiment indicators included considerable
noise not easily filtered out. Another potential query set is
the set of Stack Overflow questions that contain the keywords
“error”, “fix”, or “broken”. We observed that using such a
query set did not actually expand to a good set of negative
sentiment indicators, as it limited the scope of the set of
documents included in the query set.

The next design decision is what set of software artifacts
could serve as documents that contain general words and
phrases, without an abundance of negative sentiment indi-
cators, i.e., the background document set. The background
document set consists of 100,000 Stack Overflow questions
that contain no code tag, thus no code examples are explic-
itly denoted by the questioner. These were drawn from the
same 250,000 questions that the query set was drawn. We
hypothesized that questions without code segments are mostly
asking questions that are not specific to code segments and
thus contain more general terms and few negative sentiment
toward code. While we observed that not all questions with
code segments contain negative code examples, our intuition
is that with large enough query and background sets, we can
mine the negative sentiment indicators with these sets.

Initially, our background set was taken from language-
specific programming documentation for C++, Java, and
Python. However, we found that the background set was not
satisfactory, as many words from the background set also
had a high frequency in the query set. Documentation had
few general terms beyond programming-specific words, which
then showed up in both query and background sets. Another
potential background set is the set of questions that contain
the expression “how to”, under the intuition that questions
containing “how to” are asking for explanations as opposed
to debugging help. We found that the “how to” documents
for the background set did not contain exclusively explanatory
code and thus did not serve as a good background set with
mostly general terms.

Extracting and Preprocessing Terms. Once the query and
background sets are collected, we extract the bigrams and
unigrams from each document set by extracting terms from
the natural language segments of the whole question post.
We ensure that only the question post natural language text is
considered as part of the query and background sets, including
no moderator text or code segments as they skew results.

The natural language text portion is input to a natural
language splitter, tokenizer and stemmer to extract individual
terms. Instead of considering words as the unit, we use lex-
emes, which are formed by grouping words with the same stem
because they typically express the same concept. To identify
the lexemes, we use a homegrown morphological processor
that accounts for different inflections using the methodology
described in Miller et al. [12].

We extract both bigrams and unigrams. As mentioned
earlier, while unigrams catch the single-word terms such as
“error” and “wrong”, we found that many phrases that indicate
negative sentiment are actually two-word phrases.

After analyzing the word rankings from these data sets,
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Fig. 3: Process of mining negative sentiment indicators.

we observed that some terms were occurring often in both the
query and background sets, including general words such as
“the”, “is”, and language and implementation-specific words,
such as “java”, “php”, “sql”, “database”, “jframe”. We created
a stop word list and removed them in the extracted n-gram
sets from the query and background document sets.

Scoring and Categorizing. The next step is to compute the
frequency of occurrence of each term in the query set and
background set, separately. For each term, we compute a score
that contrasts the frequency of occurrence of the term in the
query set with the frequency of the term in the background
set. Again, following the success of the eGift project’s scoring
mechanism for contrasting document sets [11], our score s(t)
is computed as follows:

s(t) = (ntfquery(t)− ntfbkgd(t)) ∗ ln(
1

ntfbkgd(t)
)

where ntfquery(t) and ntfbkgd(t) are the normalized term
frequencies of occurrence of the term t in the query and
background sets, respectively. To compare the frequency of
occurrence of a term in the two sets, we prefer subtracting
the normalized frequency to finding their ratio. We found
that taking the ratio overemphasized the terms that occurred
infrequently in the background (and might not even be related
to the issue). Since the number and size of documents in the
query set can vary from the number and size of documents in
the background set, the frequencies are normalized. Following
a well accepted technique for term frequency normalization,
we normalize the term frequency weights by the most frequent
term in the document set [13]. The .5 is a smoothing term used
to dampen the second term to scale down the tf by the largest tf
value in the document set. The goal is to mitigate the anomaly
of higher term frequencies in longer documents because longer
documents tend to repeat the same words. Thus,

ntfquery(t) = .5 + .5 ∗ ( tfquery(t)

tfquery(mostfrequentterm)
)

The scores are used to rank the terms in order of decreasing
scores. We use a threshold to categorize all terms with a
score above the threshold as negative sentiment indicators.
Our evaluation study includes an analysis of threshold values
to determine a good threshold based on precision and recall
results. In our evaluation, we found that using a threshold
for unigrams did not result in good performance, and thus
we manually selected a subset of unigrams, produced from
the training data, from the set of terms that scored above the
threshold.

B. Sentiment-based Mining of Negative Examples

With an established set of negative sentiment indicators,
we can mine negative code examples from Stack Overflow
questions. The Stack Overflow questions are scanned for
negative sentiment indicators in the natural language segments.
Two possible parameters to explore are (1) the frequency
that negative sentiment indicators must occur and (2) the
location where they must occur to categorize a code segment
as a negative code example. We evaluated various minimum
frequencies that negative indicators need to occur in a Stack
Overflow question to classify its contained code example as
negative, and considered the code example to be negative if
the negative indicators occur anywhere in the natural language
text of the question.

We evaluated many configurations categorized into two
main approaches to classify an entry as containing a negative
code example: (1) the single-occurrence scheme: any nega-
tive indicator (i.e., bigram or unigram in Table I) occurs at
least once in the question (with varying thresholds on the
maximum ranking of the bigrams to be considered), and (2)
the scoring-based scheme: different variations of scoring each
entry such that occurrences of higher ranked bigrams in an
entry contribute more to the score than lower ranked bigrams,
where the bigram rankings are shown in Table I. The threshold
to be considered a negative code example is a score of at
least 100, which was empirically established through threshold
analysis. For approach (1), Table II first two columns show
the configurations based on bigram rank threshold and with
or without unigrams considered. For approach (2), Table III
first five columns show the configurations of ranges of bigram
rankings for the weights of 100, 75, 40, and 25, respectively,
for the variations evaluated, with and without unigrams. An
entry that contains a unigram in the table has its score increased
by 100, and thus is automatically within the threshold, again
determined empirically.

IV. EVALUATION

We designed our evaluation to answer two main research
questions with both quantitative and qualitative analysis:

RQ1: How do different approaches to mining sentiment
indicators and automatic mining of negative code examples
impact the effectiveness of the automatic negative example
miner? What is the best configuration?

RQ2: How effective is our automatic mining technique in
identifying negative code examples?

To answer RQ1, we focus on answering:



TABLE I: Mined sentiment indicators for negative code (frequency in data set: frequency in posts humans identified as negative)
Bigrams Unigrams

1. doing wrong (2:2) 2. follow error (0:0) 3. work fine (11:8) 4. error message (2:2) 5. work perfect (0:0) 1. error (25:23) 2. trying (49:37)
6. please ask (0:0) 7. fully address (0:0) 8. asked before (0:0) 9. user input (2:1) 10. first time (2:0) 3. wrong (8:8) 4. getting (10:7)
11. keep getting (0:0) 12. everything work (1:0) 13. miss something (0:0) 14. going wrong (1:1) 15. even though (2:2) 5. except (4:3) 6. expect (6:3)
16. better way (2:1) 17. something wrong (0:0) 18. shown below (0:0) 19. loop through (0:0) 20. right now (4:2) 7. null (2:2) 8. doing (14:10)
21. follow line (0:0) 22. correct way (1:1) 23. doing something (1:1) 24. much appreciate (0:0) 25. work correct (0:0) 9. work (61:48) 10. fine (15:12)
26. data frame (0:0) 27. someone help (1:0) 28. two table (1:1) 29. look something (0:0) 30. radio button (1:1) 11. something (11:8) 12. try (18:16)
31. syntax error (0:0) 32. user click (2:1) 33. same error (0:0) 34. base class (0:0) 35. function call (0:0) 13. compile (4:2) 14. remove (10:6)
36. great appreciate (2:1) 37. make sure (2:1) 38. follow except (0:0) 39. expect result (0:0) 40. submit button (0:0) 15. argue (2:2) 16. syntax (2:0)
41. return value (0:0) 42. last line (0:0) 43. end up (2:2) 44. work great (0:0) 45. regular express (0:0) 17. throw (3:2) 18. empty (8:5)
46. follow command (0:0) 47. second one (0:0) 48. public class (0:0) 49. work well (0:0) 50. view model (0:0) 19. unfortunate (2:2) 20. trouble (4:4)

(1) In the single-occurrence scheme where a negative
sentiment indicator needs to only occur once in a question to
classify the contained code example as negative, how does the
threshold T for the ranking of the highest T scoring bigrams
to be considered affect the precision and recall of the negative
code example miner?

(2) How effective is a negative code example miner under
different configurations of the scoring-based approach with
weighting the bigram occurrences based on their ranking?

(3) How does including manually selected unigrams as
indicators affect the results in both the single-occurrence and
the scoring-based schemes?

In addition to quantitatively measuring precision and recall
for the negative code example miner to answer RQ1, we
address the following subquestions for answering RQ2:

(1) Given the best configuration examined, how does the
precision and recall for negative code examples compare with
using a general purpose sentiment analysis based approach?

(2) When our system is not effective, what is the breakdown
between mined negative examples that humans judge to be
non-negative and missed negative code examples?

(3) What are the characteristics of incorrectly classified
code examples and missed negative code examples?

A. Experiment Design

Subjects, Variables, and Measures. The subjects in our study
are 240 questions that contain code tags and are randomly
selected from 150,000 Stack Overflow questions (not used in
our development work) across multiple domains. If a randomly
chosen question was manually deemed inadequate based on the
use of code tags for keywords or other text in a sentence, it
was replaced with an alternative, randomly chosen question.

The independent variable is the negative code example
mining strategy, including the different approaches to mining
sentiment indicators and categorizing code segments as nega-
tive examples. We implemented the different configurations of
our sentiment-based approach: single-occurrence with different
thresholds for ranked bigrams, and scoring-based with different
weighting schemes, both approaches with and without the 20
unigrams selected from top-scored unigrams in our mined
negative sentiment unigrams.

The dependent variable is the effectiveness of the tech-
niques. We measure the effectiveness in terms of precision and
recall. Precision is calculated by determining the percentage
of mined negative code examples that are actually negative
code examples as judged by human judges. Recall is computed
by determining the percentage of all the actual negative code

examples in the study (as identified by human judges) that are
mined as negative code examples by the automatic miner.

Methodology. To obtain the ground truth for computing preci-
sion and recall, we recruited twelve PhD students in computer
science as human judges, who have no knowledge of our
techniques, are not authors on this paper, and who have prior
computer science and programming experience. Each of the
twelve judges was given the URLs for 40 of the randomly
selected Stack Overflow questions. The human judges were
given the whole entry so they had all the text surrounding the
code example to make their judgement, as we were interested
in the ground truth. For each question, the human judges were
asked to provide their opinion of the reasons each question
was posted. They were allowed to give as many reasons that
they thought applied from the list: throws an error/exception,
has a data race, terminates normally but does not achieve its
intended functionality (semantic/logic error), uses incorrect or
deprecated methods, is extremely inefficient, is insecure, has
a platform/portability problem, wants code explained, wants
something added to code, or other.

To account for subjectivity, each of the 240 questions was
examined by two judges. Upon disagreement, another judge
who had not previously evaluated the post judged the entry,
and a majority opinion was used as the ground truth. We also
collected information from each judge on their confidence level
for each judgement. Confidence level was rated on a 4-point
Likert scale.

Threats to Validity. Our technique pulled from 250,000
Stack Overflow questions for the query and background sets,
with 60% for the query document set and 40% background
document set. The results may not transfer to other Q & A
forums; we chose Stack Overflow as it is the most used and we
believe it is representative of most software developer forums.
A larger study with larger query and background sets might
yield different results; however, we found the results did not
change much from our smaller development sets to our actual,
much larger evaluation sets, so we do not expect very different
results with larger query and background sets.

As with any study based on human judges for the ground
truth, there might be some cases where the humans may not
have correctly answered the questions. To limit this threat, we
ensured that the human judges had considerable programming
experience and familiarity with Q & A forums, and we ensured
that each Stack Overflow question was judged by at least two
judges, and when they disagreed, we collected a third opinion
and took the majority opinion. We also gathered confidence
levels for each judgement, and found quite high confidence
overall in all questions.

It is possible that scaling to more than 240 questions in



TABLE II: Results for single-occurrence scheme with different
thresholds on ranked bigrams

Bigram Rank Threshold Unigrams added? P R F-meas
0 yes 74.3 72.8 73.5
25 no 72.4 13.9 23.3
25 yes 73.2 74.2 73.7
50 no 71.8 18.5 29.4
50 yes 71.8 74.8 73.3
75 no 66.1 24.5 35.7
75 yes 71.5 77.5 74.4

100 no 65.6 26.5 37.8
100 yes 70.7 78.1 74.2

TABLE III: Results for scoring-based scheme with different
weighting configurations

Weights and Bigram Ranges Results

100 75 40 25 Unigrams
added? P R F-meas

0-4 5-9 10-24 25+ no 75.0 7.9 14.3
0-4 5-9 10-24 25+ yes 74.8 73.8 74.3
0-9 10-24 25-49 50+ no 68.4 8.6 15.3
0-9 10-24 25-49 50+ yes 73.5 73.5 73.5

General Purpose Sentiment Evaluator – 48.3 60.8 53.9

our evaluation set might lead to different results. However,
we needed to make the human judgement work reasonable to
recruit judges. We will expand the evaluation study in the near
future with more participants. For similar reasons of tedious
human judgements, we have not yet trained the general purpose
sentiment analyzer on StackOverflow text, which may improve
its effectiveness slightly.

B. Results

For our data set, the humans judged 151 of the code
examples as negative based on our definition given in the
introduction. They considered the remaining code examples
included in the questions as being posted for alternative
reasons, thus, not representative of a negative code example.

Overall, the human judges were confident in their re-
sponses. When the judges agreed with our system classifying
a code example as negative, their average confidence was 2.66
on a Likert 0-3 scale, and similarly for all other situations of
agreement/disagreement with the negative code example miner,
with little variation.

Table I shows the set of mined negative sentiment indi-
cators ranked by our scoring mechanism with a threshold of
50, along with the 20 manually selected unigrams from the
set of mined unigrams ranked above the threshold of 50. Note
that “follow error” was most likely “following error” before
stemming. The numbers in the parentheses report the frequency
that the n-gram occurred in our data set of 240 Stack Overflow
questions and the frequency that the n-gram occurred in a
question marked as containing a negative code example by
our human judges, respectively. Note that the first frequency
also represents how many questions that our negative sentiment
miner reported as a negative code example using that n-gram.
Surprisingly, bigrams such as “work fine” appeared 11 times; it
appeared always as a negation. Similarly, “trying” appeared 49
times. These results show the strength of an empirically-driven
approach.

RQ1: How do different approaches to mining sentiment
indicators and automatic mining of negative code examples
impact the effectiveness of the automatic negative example
miner? Tables II and III together answer the three research
subquestions, by reporting the precision, recall, and F-measure
for various configurations. Table II reports results on the
configurations of the single-occurrence scheme, while Table III
reports results for the configurations of the scoring-based
scheme.

In the single-occurrence scheme where a negative senti-
ment indicator needs to only occur once in a question to
classify the contained code example as negative, how does
the threshold T for the ranking of the highest T scoring
bigrams to be considered affect the precision and recall of
the negative code example miner? We report precision, recall,
and F-measure for thresholds to include the top 25, 50, 75, and
100 ranked bigrams from our customized negative sentiment
indicators. Overall, the precision is fairly similar at the dif-
ferent thresholds, especially when unigrams are also used. If
only high precision is desired to ensure that the negative code
examples that are mined are indeed negative code examples,
then lower thresholds should be used. If more recall is desired
without sacrificing much precision, then a threshold of 50 top
bigrams with unigrams is a good choice.

How effective is a negative code example miner under
different configurations of the scoring-based approach with
weighting the bigram occurrences in questions based on their
ranking? With our training set, we found the two ranges in
Table III to be the best. While the precision did not vary
much among the weighting schemes when unigrams were
included, there was a noticeable difference in precision among
the weighting schemes when unigrams are not included. Our
best weighting scheme, which has the smallest ranges and
added unigrams (which we call the 0-5-10-25 scoring-based
scheme), had little added precision or recall over the best
single-occurrence scheme. While we consider this to be the
best scheme given that it achieves the highest precision among
all schemes without much loss in recall, we cannot definitively
say that weighting is beneficial.

How does including manually selected unigrams as in-
dicators affect the results in both the single-occurrence and
the scoring-based schemes? Including the unigrams in the
negative sentiment indicator set achieves much better recall
for all configurations of both the single-occurrence scheme and
the scoring-based scheme than without the unigrams. As seen
in Table II, the 20 unigrams alone (depicted by the first row
of results) achieved a much better F-measure than any pure
bigram scheme. This is the insight that led us to our scoring-
based scheme, where we weighted bigrams based on ranking
and left unigrams unweighted. As indicated by Table I, the
bigrams did not appear frequently enough in our data set to
make much impact, and the unigrams dominated the results,
especially the recall.

RQ2: How effective is our automatic mining technique
in identifying negative code examples? We compared our
best scheme, the 0-5-10-25 scoring-based scheme, against our
negative code example miner that uses the general purpose
sentiment analyzer from Python NLTK [10]. To create this
miner, we input the text of each of the 240 Stack Overflow
questions to the NLTK text classifier, which outputs a cate-



gorization of positive, negative, or neutral. In this work, we
combined positive and neutral into non-negative.

The general purpose sentiment analyzer-based approach
yields 48.3% precision, 60.8% recall, and 53.9 F-measure on
our data set. Our best configuration, the 0-5-10-25 scoring-
based scheme, achieves 74.8% precision, 73.8% recall, and an
F-measure of 74.3. We believe this is very promising, as it
increases precision by 26.5%, a 54.9% increase in precision
over the general purpose sentiment analysis-based system.

C. Qualitative Analysis

Our qualitative analysis focuses on answering the two
subquestions of RQ2: When our system is not effective, what is
the breakdown between mined negative examples that humans
judge to be non-negative and missed negative code examples?
What are the characteristics of incorrectly classified code
examples and missed negative code examples? We examined
the Stack Overflow questions where our best configuration,
the 0-5-10-25 scoring-based scheme, either missed negative
code examples or incorrectly identified an example as negative
code. There exist 39 questions that were identified incorrectly
as containing negative code examples and 41 questions that
the human judges said contained negative code examples, but
the system missed them. Table IV shows examples from each
of these categories after showing some examples of negative
code examples where the human judges and the system agreed.

Analysis of the code segments incorrectly identified as
negative code examples showed that most of them were cases
where the author wanted to add something to their code,
and was using code examples as context for the question. In
the third example in Table IV, the poster is soliciting help
regarding “changing the ’jagged’ effect of the flames”. The
poster is modifying non-negative code taken from sample code
online. The poster’s dissatisfaction is not with the sample
code, but with attempting to amend the code to suit his/her
intentions. Further, as shown in the fourth post, occasionally
the mined sentiment indicators are incorrectly applied. Many
times, if code was identified incorrectly as negative, the
sentences containing the negative sentiment did not pertain to
the code. Rather, the code served a contextual role.

Our analysis of the questions where the negative code
miner missed negative code examples revealed some limi-
tations of using a system based on n-grams. The fifth ex-
ample in Table IV contains a segment of inefficient code.
The poster mentions the word “lag” multiple times. Lag is
a popular indicator of negative code; however, it was not
contained in the mined bigram/unigram list, resulting in the
negative code example going undetected. Lastly, the majority
of negative code examples that were missed were logic errors
involving code that did not work as the author specified.
These questions did not contain negative sentiment, rather,
they contained syntactical shifts. Posters used words such as
“but” and “although” to indicate that there was a source of
dissatisfaction with the code. As seen in the sixth example,
using a desktop browser, the code returned the url perfectly.
However, the poster continues, “but when I am testing same
website code on my mobile browser...”, indicating the result is
not correct as it was previously.

V. RELATED WORK

Prior work has shown that code examples are an important
learning tool [1], [2]. Code examples have also been mined for
other purposes. Kim et al. mined ”high-quality code examples”
from the internet to implement a new approach for a code
search engine [4]. Holmes et al. mined code examples that
were indicative of a certain API’s implementation [5]. They
created the Strathcona Recommendation Tool, which could
be used by developers to find mined, API-relevant fragments
of code. Zhong et al. developed a tool called MAPO, which
automatically mines API usage patterns [6]. Keivanloo et al.
strived to make it possible to automatically mine working code
examples from open source Java projects [14]. They found
that most code search engines tend to fail to take into account
whether code works or not, thereby not providing developers
with intended results. Ponzanelli et al. developed an Eclipse
plug-in, Prompter, which scans through a developer’s code and
retrieves relevant Stack Overflow question results [15].

Sentiment analysis has been applied to discussion forums
such as travel forums and other non-software developer con-
texts where opinions are common [9], [16], [17]. In software
engineering, sentiment analysis has been used to examine
developer emotions in various developer communications.
Novella et al. analyzed the relationship between the phrasing
of a question and the overall response to that question [18].
In particular, they explored how the ”emotional style” of a
question affects the will of others on the website to contribute
an answer.

Tourney et al. used sentiment analysis to identify the
feelings of distress and happiness that might exist within a
software development team [19]. Mailing lists from the Apache
Software Foundation were used to identify the positive and
negative sentiment. They filtered out all source code and
only took into account natural language, then applied the
SentiStrength tool to determine the sentiment expressed in the
emails. Murgia et al. explored the same issue of developer
satisfaction, but applied it to Apache Software Foundation
issue reports [19]. By using human annotators, they found
that issue reports express emotion on factors such as design
decisions. Bazelli et al. examined the personality traits of
Stack Overflow users based on linguistic inquiry and word
count [20]. They disregarded all code tags in their analysis.
The sentiment indicators used by these researchers cannot
be applied to our research problem, as we are looking for
sentiment about code segments embedded in questions, which
requires identifying sentiment indicators related specifically to
the nearby code segments, not overall opinion.

VI. CONCLUSION

In this paper, we present the first known technique for auto-
matically mining negative code examples. Such negative code
examples can be used for learning, quality assessment, and
interactively helping programmers within the IDE to improve
their code. The approach demonstrates yet another useful kind
of information that can be mined from Q & A forums, by
performing sentiment analysis on questions that contain code
segments. Our evaluation shows that we can achieve precision
of 75% with recall of 74% with a single configuration of
weighted sentiment indicators, which is promising and much
better than using general purpose sentiment analysis.



TABLE IV: Examples of StackOverflow Entries Mined and Analyzed

Identified correctly as negative code examples
I am right now debugging my socket application, witch involves running and shutting down it consistently. My problem is when I run and shut it down then run it again I
receive 10048 error code, witch indicate address already in use. I tried to set socket descriptor to SO REUSEADDR but still receiving 10048 error code if I run and close my
application consistently. /***CODE***/
http:// stackoverflow.com/questions/20009407/how-to-reuseaddress-option-with-socket-properly
I’m trying to clear a part of the canvas using clearRect but it doesn’t seem to work. /***CODE***/ In the above code i’m trying to clear the work ”GRAPE” but it does not
work. Where am I going wrong ?
http:// stackoverflow.com/questions/20051279/ issues-with-clearrect-in-canvas

Identified incorrectly as negative code examples
I am using the ”fire” effect from this neat little code snippet from: http://www.script-tutorials.com/html5-fire-effect/ but as I want to use it without
the background image I am trying to work out how not to have the hard edge of the canvas around the flames. I have been going through the function but since it is the first
time I work with canvas I am not understanding how to control the animation. If you go on the tutorial link above you will see the full code from the extract I posted below. I
believe this to be the part where the flames are actually drawn. /***CODE***/ I do not know if anyone can help or at least point me in the right directions. Is there a way of
a) change the ”jagged” effect of the flames (like the yellow ones) so as they do not cut off on the edges of the canves or b) Make the entire animation softer around the canvas
edges or fade?
I have been searching for standard HTML5 canvas flame tutorials online but they are either really complex or really cheesy. If anyone knows of a
good alternative, let me know.
http:// stackoverflow.com/questions/20600444/html5-canvas-fire-fade-around-edges
I need to use some dynamic information from ”system.xml” on my ’config.xml’.How i do that??Something like this:(system.xml) /***CODE***/ And on my config i’ll use
that information setted up by customer(user) to do something else.Its possible?
http:// stackoverflow.com/questions/21563645/how-to-use-dynamic-information-on-config-xml

Identified incorrectly as non-negative code examples
Recently I’ve noticed in my game whenever iAd changes the currently displayed ad, there is about a 0.25 second lag in the game, which is just enough to be noticeable. After
the ad finishes loading, there are no lag problems, but up until that point, if the user is in-game, that could hurt their experience.Has anyone found a solution to the iAd lag
problem?
/***CODE***/
I’ve also noticed that there is a lag right when I ad the banner view to the screen.
http:// stackoverflow.com/questions/22373212/ iad-lags-when-changing-ads
I am using html form to integrate Paypal and my form is as
/***CODE***/
When I am testing this Website code on desktop browsers this is posting paypal data back on return url perfectly. But when I am testing same website code on my Mobile
browser payapl is not posting back any data on return url. It just get back on return url without any data.Please help me.
http:// stackoverflow.com/questions/20406455/paypal-not-posting-data-on-return-url-on-mobile-browsers

Our future work focuses on improving the precision of the
automatic miner of negative code examples. We are investigat-
ing techniques to take into account the context and location of
the negative sentiment indicators within the forum questions.
We are also examining the potential role of machine learning.
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