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ABSTRACT
Reducing the energy usage of software is becoming more
important in many environments, in particular, battery-
powered mobile devices, embedded systems and data cen-
ters. Recent empirical studies indicate that software engi-
neers can support the goal of reducing energy usage by mak-
ing design and implementation decisions in ways that take
into consideration how such decisions impact the energy us-
age of an application. However, the large number of possible
choices and the lack of feedback and information available
to software engineers necessitates some form of automated
decision-making support.

This paper describes the first known automated support
for systematically optimizing the energy usage of applica-
tions by making code-level changes. It is effective at re-
ducing energy usage while freeing developers from need-
ing to deal with the low-level, tedious tasks of applying
changes and monitoring the resulting impacts to the energy
usage of their application. We present a general framework,
SEEDS, as well as an instantiation of the framework that
automatically optimizes Java applications by selecting the
most energy-efficient library implementations for Java’s Col-
lections API. Our empirical evaluation of the framework and
instantiation show that it is possible to improve the energy
usage of an application in a fully automated manner for a
reasonable cost.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance, and Enhancement]:
Restructuring, reverse engineering, and reengineering; D.2.6
[Programming Environments]: Integrated environments

General Terms
Theory, Measurement
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energy usage, software optimization, analysis framework
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1. INTRODUCTION
Inherent in today’s computing environments are concerns

about battery life, heat creation, fan noise, and overall po-
tentially high energy costs. Research has shown that power
consumption can be reduced through designing computer
architectures that are more energy efficient (e.g., [11, 12, 23,
25, 39, 46]), developing compiler optimizations targeting en-
ergy usage (e.g., [18–21, 24, 26, 40, 42]), improving operating
systems to help manage energy usage(e.g., [14, 35–37, 51]),
and designing hardware and batteries with power consump-
tion in mind (e.g., [1, 7, 13]).

We believe that, like for other optimization targets such as
execution time or memory usage, not all improvements can
be achieved automatically by lower-level systems and hard-
ware. Unfortunately, few software developers design and
implement applications with consideration for their energy
usage. Our recent interviews with 18 professional software
developers revealed that this is due to two primary reasons:
developers (1) do not understand how the software engi-
neering decisions they make affect the energy consumption
of their applications, and (2) lack the tool support to help
them make decisions or change their code to improve its
energy usage.

Most existing research into helping software engineers re-
duce energy usage is empirically-based and has the goal of
understanding how different types of changes impact the
overall energy usage of applications. In particular, there
have been studies of how design patterns [8, 28, 41], method
inlining [10], choosing web servers [29], selecting among web
browsers [3], and using various implementations for the same
algorithm [6] can each impact energy usage. The results of
these studies all support our belief that software engineers
can indeed help reduce energy consumption by considering
the energy impacts of the decisions they make on a daily
basis.

Although the knowledge gained from empirical studies
can increase our understanding of potential energy-related
“bugs”, we believe that simply providing such knowledge is
unlikely to be effective at reducing energy usage in practice
for several reasons. First, the many layers of abstraction
in typical applications, combined with subtle interactions
between both hardware and software components, suggests
that it is difficult, if not impossible, for developers to predict
how the changes they make will impact the energy consump-
tion of their applications. Second, the energy consumption
of an application or software component can vary depend-
ing on where it is executed (i.e., hardware architecture or
operating system). A recent survey on Android fragmen-



tation showed that there are over 10,000 possible combina-
tions of hardware and software that can run Android appli-
cations [33]. Of course, in practice, there are far fewer com-
binations that are commonly used, but there are still too
many to expect developers to maintain separate versions of
their applications for each possibility. Finally, it is unlikely
that a single action will always result in the best outcome.
In many cases, additional factors (e.g., the context of where
a change will be made) can affect the impact of a change.
This means that developers need to have essentially perfect
knowledge about their systems to be able to make a “good”
decision.

This paper describes the Software Engineer’s Energy-opt-
imization Decision Support framework (SEEDS), a novel
framework to help software engineers develop energy-efficient
applications without having to address the low-level, tedious
work of applying changes and monitoring the resulting im-
pacts to the energy usage of their application. SEEDS pro-
vides automated analysis, decision-making, and implemen-
tation of decisions towards optimizing a given targeted soft-
ware engineering decision with regard to energy usage of the
entire application. SEEDS also takes into account the ex-
ecution context (i.e., platform and expected inputs) where
the application will be deployed.

In this paper, we demonstrate how SEEDS can be instan-
tiated by describing how we used it to create the SEEDS
API Implementation Selector (SEEDSapi). A tool that opti-
mizes Java applications that use the Java Collections Frame-
work (JCF) by automatically selecting the most energy ef-
ficient implementations of the Collections application pro-
gramming interface (API) to use at each location where
a collection object is allocated. SEEDSapi automatically
(1) generates application versions implementing many differ-
ent alternative combinations of API implementation choices
for all the object instantiation locations in the application,
(2) performs power-monitored executions for a given test
suite on all the generated versions, (3) analyzes the collected
energy usage data to identify the best combination of API
implementation choices per object allocation location, and
(4) generates an optimized version of the application based
on API implementation decision-making.

An evaluation comparing the energy usage of 7 unmodified
applications and the corresponding optimized versions cre-
ated by SEEDSapi demonstrate that the framework is able
to effectively improve the energy usage of applications with-
out requiring the software engineer to provide more than the
application, API implementations, and test suite.

The main contributions described in this paper are:

• A fully automated framework, SEEDS, to support de-
velopers in the task of improving the energy usage of
their applications for a given platform by making de-
cisions about which source-level changes to apply.

• SEEDSapi, an instantiation of SEEDS to improve the
energy usage of an application by selecting the most
efficient implementations of the Collection API.

• An evaluation of the effectiveness and cost of SEEDS
through the use of SEEDSapi on a set of open source
projects.

• A demonstration of how SEEDS can be used to ex-
pand the current body of knowledge on designing and
implementing energy efficient applications by enabling

researchers to answer questions that they would oth-
erwise not be able to answer.

The remainder of this paper is organized as follows: Sec-
tion 2 describes SEEDS, our framework for optimizing en-
ergy usage. Section 3 presents SEEDSapi, our instantiation
of SEEDS. Section 4 presents our empirical evaluation of
SEEDS and SEEDSapi including our methodology, data,
and analysis. Finally, Sections 5 and 6 discuss related work
and present our conclusions and future work.

2. THE SEEDS FRAMEWORK
We designed SEEDS to support three primary goals:

(1) Automate the entire process of optimizing the appli-
cation with respect to potential code changes to save
developers from performing tedious, error-prone tasks.

(2) Abstract away the systems and hardware platform in-
teractions from developer concern.

(3) Be general enough to support different types of deci-
sions commonly made by software engineers, including
optimization goals, filtering mechanisms, search strate-
gies, energy profiling approaches, and hardware plat-
forms.

Figure 1 provides a high-level overview of SEEDS. In the
remainder of this section, we provide a detailed discussion
of each of the framework’s main components.

2.1 Inputs
As the figure shows, SEEDS requires four inputs: the

application code, a set of potential changes, the developer’s
chosen optimization parameters, and additional context in-
formation.

The application code is the code of the application that
the software engineer wants to optimize. The set of poten-
tial changes includes all of the changes that the developer
is deciding whether or not to make. For example, the set
of potential changes could include decisions such as which
library implementation to use, whether to perform refactor-
ing, whether to replace an algorithm with a different algo-
rithm, whether to cache the result of a computation, etc.
Note that the transformations specified in the set of poten-
tial changes are abstract rather than concrete (e.g., inline a
method vs. inline method foo in method bar at line 5). This
allows sets of changes to be reused and frees developers from
the task of recomputing them for each new application that
they want to improve. The method for transforming ab-
stract potential changes into concrete changes for the given
application is described in Section 2.2.

The optimization parameters are constraints on where
SEEDS should consider making potential changes. For ex-
ample, a developer could restrict the application of a refac-
toring to only a certain subset of the application or only al-
low switching algorithms if the algorithm’s inputs are larger
than a given threshold. In addition, the optimization param-
eters can also include guidance about how changes should
be applied. This allows software engineers to encode their
domain-specific knowledge and intuition into the framework.
For example, the software engineer could provide a ranking
of alternative library implementations for a given API based
on their intuition about the performance of one implemen-
tation over another. Or, they may be considering applying
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Figure 1: Overview of SEEDS.

various refactorings based on recommendations from a tool
or documentation that indicates that applying that refac-
toring improves code readability and maintainability.

Finally, the context information indicates the platform
where the application will be executed and the expected in-
puts or workload that will be used to drive the application.
The strategy used for energy profiling (see Section 2.3) dic-
tates the specific information that needs to be provided. For
example, if energy profiling is to be done using a hardware-
based platform, then the platform itself and a set of suitable,
concrete inputs are needed. However, if energy profiling is
to be done using an dynamic analysis-based estimation ap-
proach, then execution traces and a model of the platform
are required. Finally, if a static estimation approach is used,
a developer may not have to provide any context informa-
tion at all. The ability to provide context information can
be especially useful if a developer does not have easy access
to a target system. Essentially, they can“cross-optimize” (in
the same spirit as cross-compilation) their application to a
wide range of target platforms.

Given these inputs, the key tasks of SEEDS are then to:

(1) Define the application-specific search space, that is,
the space of concrete changes that SEEDS will con-
sider, and

(2) Search through the application-specific search space
to find an optimized version of the application that
reduces energy usage as much as possible.

Each of these tasks is described in more detail in the follow-
ing subsections.

2.2 Creating application-specific search space
As we mentioned previously, the changes in the set of po-

tential changes are abstract rather than concrete. SEEDS’
first task then is to determine the application-specific search
space by concretizing these abstract changes with respect
to the given application and optimization parameters. In
essence, the application-specific search space is the set of
all possible versions of the given application that could be
created by SEEDS.

To calculate the application-specific search space, SEEDS
considers each potential change and scans the application’s
code to identify the locations where the change could be
applied. For example, if a potential change is to inline a
method, SEEDS will identify all of the locations in the ap-
plication where a method is invoked. This initial list of
concrete changes is then filtered based on both explicit and

implicit constraints. Explicit constraints are generally based
on the type system of the programming language used to im-
plement the application. For example, implementations of
an API can only be swapped if both implementations expose
the same interface. Implicit constraints are most commonly
provided by the optimization parameters.

2.3 Search: Select, Transform, Profile
Depending on the given set of potential changes and num-

ber of locations in the application where those changes can
be correctly applied, the application-specific search space
could be very large. Manually exploring such a space would
be a tedious, error-prone task for a software engineer, and
furthermore such a space may actually be too large to search
exhaustively and would require some kind of sampling as in
search-based software engineering.

SEEDS’ search task is responsible for navigating the app-
lication-specific search space to find versions of the applica-
tion that consume less energy than the original version and
ultimately choose the optimized version of the application
that results in the greatest amount of energy savings.

At a high level, the task of searching the application-
specific search space is divided into three steps: (1) select
a solution from the application-specific search space (i.e.,
a concretized change or set of changes), (2) transform the
original application by applying the chosen solution, and
(3) profile the energy usage of the transformed version.

The search process begins by selecting a solution from the
search space. In practice, essentially any selection strategy
could be employed. The selection could be made in random
manner, based on a heuristic, using a genetic algorithm, etc.
One of the main benefits of defining SEEDS in this way is
that software engineers can tailor the selection component
to their specific applications and sets of potential changes.
Essentially, the selection component is a fifth input to the
framework.

The second step of the search task is to transform the ap-
plication by applying the chosen solution. Often such trans-
formations will be done using support provided by an inte-
grated development environment (IDE) or other stand-alone
tools. Although SEEDS attempts to filter out invalid con-
crete changes when creating the application-specific search
space, it is possible that unknown, implicit constraints are
broken by applying the changes. For example, the applica-
tion may assume, but not document, that the iteration order
of a collection must be fixed or that elements are return in
sorted-order. If concrete inputs or an explicit test suite are



provided as part of the context information, SEEDS can
perform regression testing to address this possibility. Re-
gression testing ensures that, with respect to the provided
inputs, a modified version of an application is semantically
identical to its original version. Transformed application
versions that fail regression testing are simply discarded and
a new solution is chosen.

The third step of the search task is to profile the trans-
formed version of the application to calculate its energy us-
age. This could be achieved through existing techniques,
including hardware-based approaches using physical instru-
mentation and monitoring(e.g., [41, 45, 49]), simulation-based
approaches that replicate the actions of a processor and es-
timate energy consumption of each executed cycle by using
a cycle-accurate simulator(e.g., [5, 15, 30]), or estimation-
based approaches that model energy-influencing features to
estimate energy usage (e.g., [2, 16, 32]).

After calculating the energy usage of the transformed ver-
sion, the search process begins again. The selection step
incorporates the new information about how the selected
solution impacts energy usage and chooses a new solution.
The transform step applies the new solution and, if possi-
ble, checks whether it produces a valid application. And the
profile step calculates the energy consumption of the new,
transformed application version. The search process iterates
in this fashion until a stopping point is reached. Similar to
how essentially any selection strategy can be used, essen-
tially any stopping criterion can be used. The search could
stop when the energy usage of the application has been re-
duced by a certain percentage or is less than a given thresh-
old. It could stop after a specified number of iterations or
when energy usage does not improve for a given number of
iterations. The stopping criterion could also halt the search
after a set amount of time or when the application-specific
search space has been completely explored.

2.4 Output
The output of SEEDS is a optimized version of the given

application whose energy usage is reduced as much as pos-
sible with respect to the given set of potential changes, op-
timization parameters, and context information. Note that
the optimized version is not guaranteed to be optimal (i.e.,
there may be another version of the application that uses
less energy) or even guaranteed to reduce the amount of en-
ergy consumed by the original application version. It may
be the case that, given a specific combination of inputs, the
application can not be improved. In our evaluation, this
situation occurred once. Although this is not our desired
outcome, knowing that an application can not be improved
by SEEDS is useful information in and of itself. It indi-
cates that the developer is free to make any of the consid-
ered changes without needing to consider how they would
impact energy usage.

3. INSTANTIATING SEEDS
In order to evaluate SEEDS, it is necessary to create an

instantiation of it. As we mentioned in Section 2, there
are many common decisions that software engineers make
that could be the target of an instantiation of SEEDS.
We decided to create an implementation of SEEDS called
SEEDSapi that supports software engineers as they make
decisions about which library implementations they should
use to optimize the overall energy usage of their applications.

More specifically, SEEDSapi optimizes Java applications by
identifying implementations of the Java Collections API that
are more energy efficient, if any, than the implementations
currently used by the application.

We chose to target the choice of Collections API imple-
mentation for several reasons. First, choosing a collection
implementation is a common decision that is faced by devel-
opers. Second, in many cases, developers are choosing API
implementations based on familiarity or execution time con-
cerns. This means that applications are unlikely to have op-
timized their choice of collection implementation to energy
usage. Finally, the impact of Collections API choice has
not been investigated by researchers. As such, investigating
their impacts supports our of goal of using the framework to
explore the energy optimization space and enable researchers
to answer questions that they could not previously ask.

Because we are the first to look at the choice of API im-
plementation, we decided to conduct an initial feasibility
study to determine whether the choice of API implementa-
tion does in fact impact the energy usage of an application
before actually implementing SEEDSapi.

sThe remainder of this section discusses our preliminary
study and how we instantiated SEEDS to create SEEDSapi.

3.1 Preliminary Study
The goal of our preliminary study was to determine if

changing implementations of the Collections API can have
a statistically significant impact on the energy usage of an
application.

To answer this question, we created 13 versions of a pub-
licly available micro-benchmark.1 At a high-level, this bench-
mark creates an instance of a class that implements the Col-
lection interface and then performs a large number of oper-
ations on the instance (e.g., adding single elements, adding
another collection of elements, removing some elements, re-
moving all elements, etc.). We chose to use this benchmark
for two reasons. First, it has previously been used to evalu-
ate the runtime performance of implementations of the Col-
lections API. Second, it is a micro-benchmark; the majority
of its execution is spent in the code of the collections imple-
mentations. This allows us to focus directly on our area of
interest (i.e., the collections implementations).

Each of the 13 versions of the benchmark we created uses
a different concrete implementation of the Collection. The
first column of Table 1, Current Choice, shows the 13 con-
crete implementations of Collection interface that we con-
sidered. We then executed each version of the benchmark
10 times and profiled its energy usage. (See Section 3.2 for
a detailed explanation of how we profile energy usage.) We
then conducted pair-wise statistical analysis of the versions’
energy usage using the Kruskal-Wallis test. Essentially, we
determined, given a current implementation choice, whether
switching to another implementation decreases energy us-
age, increases energy usage, or has no effect.

In Table 1, the second and fourth columns, # Better and
# Worse show, given the current implementation in the
first column, the number of times switching to an another
implementation improves energy usage (α = 0.05) and the
number of times switching to an another concrete imple-
mentation worsens energy usage (α = 0.05), respectively.
For example, if the currently selected implementation is Ar-

1http://java.dzone.com/articles/java-collection-
performance



Table 1: Potential Improvement or Degradation in Energy Usage from Switching Collection Implementations.

Potential Gain from Switching Potential Loss from Switching

Current Choice # Better Max Improvement (%) # Worse Max Degradation (%)

ArrayList 2 95 0 —
ConcurrentLinkedQueue 4 96 0 —
LinkedHashSet 0 — 7 2,598
HashSet 0 — 7 2,617
LinkedList 5 96 0 —
TreeSet 0 — 5 1,974
PriorityQueue 2 96 0 —
ConcurrentLinkedDeque 6 96 0 —
CopyOnWriteArrayList 0 — 2 79
ConcurrentSkipListSet 0 — 4 1,495
LinkedBlockingDeque 6 96 0 —
LinkedTransferQueue 5 96 0 —
CopyOnWriteArraySet 0 — 5 1,602

rayList, there are two implementations that will decrease
the benchmark’s energy usage and no implementations that
will increase the benchmark’s energy usage. As the table
shows, for 7 of the 13 cases, energy usage can be statis-
tically improved by switching implementations, and for 6
of the 13 cases, energy usage can be statistically worsened.
These results show that indeed switching implementations
of the Collections API can in fact impact the energy usage
of an application.

To gain some additional insight into the effects of switch-
ing implementations, we investigated the magnitude of the
increases and decreases. For the cases where there is a sta-
tistically better or worse alternative implementation, we cal-
culated the percentage difference in the mean energy usage
of the 10 runs for the current version and the mean energy
usage of the 10 runs of the best alternative and the worst al-
ternative. Note that for this benchmark, HashSet is the most
energy efficient implementation and LinkedBlockingDeque

is the most inefficient implementation.
In Table 1, the third column, Max Improvement, and the

fifth column, Max Degradation show the percentage change
from switching from the current version to the best version
and from the current version to the worst version, respec-
tively. A dash (—) indicates a case where there was not
a statistically better or worse choice than the current im-
plementation. For example, switching from ArrayList to
HashSet results in nearly a 100 % improvement in energy
usage while switching from LinkedHashSet to LinkedBlock-

ingDeque increases energy usage by over 2,500 %. Not only
does switching implementations of the Collections API sta-
tistically significantly impact energy usage, but the mag-
nitude of the impact can be quite large. These empirical
results quantify the potential impact of a framework such as
SEEDS.

3.2 SEEDSapi

Based on the results from our preliminary study on the
impact of switching implementations of the Collections API,
we decided to go forward with creating SEEDSapi. A high-
level overview of SEEDSapi is shown in Figure 2, and the
remainder of this subsection describes how each of the com-
ponents of SEEDS was instantiated in SEEDSapi. Compo-
nents that are not specifically mentioned were implemented

as described in Section 2.
Application code. SEEDSapi is designed to optimize

Java applications. Therefore, it accepts as input Java appli-
cations that use the Collections API.

Potential Changes. The set of potential changes indi-
cates which implementations of the Collections API can be
substituted for one another. For example, a potential change
would be to substitute HashSet for a TreeSet or vice versa
or LinkedList for ArrayList. Note that SEEDSapi can
consider changes between any implementations that imple-
ment the same Collections API. Currently, the tool includes
all implementations from the JCF as well as all implemen-
tations of Collection from Javolution,2 fastutil,3 Apache
Commons Collections,4 Goldman-Sachs Collections,5 and
Google’s Guava libraries.6

We have also built an automated tool that automatically
extracts potential changes from set libraries. If a developer
would want to consider additional potential changes (e.g.,
implementations from another library), they can simply pro-
vide the library’s jar file to our tool.

Context information. To use SEEDSapi, developers
must provide a set of test suite as part of the context infor-
mation. The test suite is used to perform regression testing
to ensure that all considered transformations are valid and
to execute the transformed applications during profiling.

Define application-specific search space. We ob-
served that, in many cases, developers do not “program to
the interface”, rather they specify a concrete type for their
variables (e.g., ArrayList l vs. List l). Unfortunately,
for SEEDSapi, this practice can unnecessarily constrain the
size of the application-specific search space and hinder the
optimization process. To address the problem, SEEDSapi

generalizes the application’s code by changing the type of
each variable, whose original type is a subclass of Collec-

tion, to the most general supertype. For example, the type
of a variable that was declared as a LinkedList could be
generalized to: (1) Collection if only methods declared in

2http://javolution.org
3http://fastutil.di.unimi.it
4http://commons.apache.org/proper/commons-
collections
5https://github.com/goldmansachs/gs-collections
6https://code.google.com/p/guava-libraries/
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Figure 2: Overview of SEEDSapi.

the Collections interface are used, (2) List if methods de-
clared in List, but not in Collection, are used (e.g., get),
or (3) LinkedList if methods declared by LinkedList, but
not List, are used (e.g., addLast). In practice, SEEDSapi

uses the Eclipse IDE’s refactoring tools to automatically ap-
ply the Generalize Type refactoring to every variable whose
type is a subclass of Collection.

After generalization, SEEDSapi analyzes the application
to identify the locations where instances of the Collections
API are created. Although this may seem like a trivial
task, in Java object allocation is actually a two-step pro-
cess. First, a new instance of the desired type is created
using the new bytecode. Then, at some point later, one of
the type’s constructors is invoked on the new object using
the invokespecial bytecode. Identifying both bytecodes is
necessary to be able to transform the application because
the type of the object created by the new must be the same
as the declaring type of the constructor that is invoked by
the invokespecial. Unfortunately, there is no guarantee
that the new and invokespecial are easy to match. In fact,
depending on the structure of the code, there can be an arbi-
trary number of intervening instructions. In order to identify
pairs of new and invokespecial bytecodes that constitute
an object allocation, SEEDSapi uses the T.J. Watson Li-
braries for Analysis (WALA) [47] to implement a def-use
analysis that tracks backwards from the target object of the
invokespecial to the new where it was created.

After identifying the locations in an application where
collection objects are allocated, SEEDSapi, determines how
many potential changes could be applied at each location.
For example, if an instance of the Set interface is being cre-
ated, SEEDSapi identifies all potential changes that switch
implementation to an implementation of the Set API. The
combination of all allocation locations and all possible changes
away from the generic type of the object being created con-
stitues SEEDSapi’s application-specific search space.

Select solution. Because there has been no prior investi-
gation into the impacts of switching implementations of the
Collections API on energy usage, we have no intuition or
information on the shape of the application-specific search
space or how to search through it effectively. For example,

we have no idea if there are likely to be many local minima,
if the effects of multiple changes are likely to be additive or
independent, or even if the search space is differentiable. As
a result, we decided to implement one of the simplest search
strategies possible: an exhaustive exploration of all possible
applications on a single concrete change.

Our search strategy starts by identifying the most energy
efficient implementation choice at each location in the pro-
gram where an object that implements the Collections API
is created. SEEDSapi identifies the most efficient imple-
mentation choice at each location by applying each concrete
change to the program, running the resulting version mul-
tiple times, comparing the means of the energy usages to
find the change that results in the least amount of energy
consumption. Note that we are considering each location
separately. After identifying the most efficient implemen-
tation at each object allocation location, SEEDSapi creates
one additional version where the most efficient change at
each location is applied. Finally, the energy impacts of all
of the versions executed during the search process are com-
pared and the one that results in the largest decrease in
energy usage is selected to be the output of the tool. If
none of the changed versions is a statistical improvement
over the original, unmodified application, the original ver-
sion is returned instead. In this way, SEEDSapi is guaran-
teed to never produce an optimized version that performs
worse than the original application.

Although this strategy is simple, it does result in opti-
mized applications that are more energy efficient than the
original applications. In our experiments, SEEDSapi im-
proved the energy usage of 6 of our 7 subject applications
by between ≈ 2 % and ≈ 17 %. Moreover, as we explained
before, this search strategy is meant to be a starting point
for future research rather than the best way of creating op-
timized applications.

Transform application. To apply the selected changes,
SEEDSapi uses ObjectWeb’s ASM bytecode rewriting li-
brary7 to change the types of new and invokespecial byte-
codes that correspond to the locations of the selected changes.
We chose to directly modify the application’s bytecode, rather

7http://asm.ow2.org



Table 2: Subject applications.

Application Version LoC # Tests Coverage (%) # Change Sites

Barbecue — 13,610 247 55.9 10
Jdepend 2.9.1 5,865 53 53.2 14
Apache-xml-security 1.0 50,412 175 41.9 15
Joda-Time 2.1 69,225 197 36.6 16
Commons Lang 3.1 100,566 2,046 94.9 47
Commons Beanutils 1.8.3 69,355 1,277 71.3 7
Commons CLI 1.2 8,638 187 96.7 14

than its source code, so that SEEDSapi does not have to re-
compile the application each time a change is applied.

After each time the application is transformed, the test
suite provided as input is used to ensure that the transfor-
mation has not broken the functionality of the application.

Profile energy usage. To profile the amount of energy
consumed when executing an application, we used a Low
Power Energy Aware Processing (LEAP) node [45]. Our
LEAP node is an x86 platform based on an Intel Atom
motherboard (D945GCLF2). It is currently configured with
1 GB of DDR2 RAM, a 320 GB 7200 RPM SATA disk drive
(WD3200 BEKT), and runs XUbuntu 12.04. Each com-
ponent in the LEAP system (e.g., CPU, disk drives, mem-
ory, etc.) is connected to an analog-to-digital data acqui-
sition (DAQ) card (National Instruments USB-6215) that
samples the amount of power consumed by the component at
a rate of 10 kHz (≈ 10,000 samples per second). The LEAP
also provides running applications with the ability to trigger
a synchronization signal. This allows for synchronizing the
recorded power samples with the portions of the execution
that are of interest.

Note that while the original LEAP specification calls for
using the same computer to both run an application of inter-
est and collect power samples, we have modified the design
to use dedicated hardware for each of these roles. Using sep-
arate machines prevents the introduction of any unwanted
measurement overheads. The only remaining source of un-
wanted overhead is the collection of synchronization infor-
mation. It is possible to account for this cost by profiling
the energy cost of recording synchronization information and
subtracting it from the reported energy numbers. However,
because we are concerned with energy consumption relative
to a base line (i.e., the original application) and the energy
cost of recording synchronization information is essentially
constant, we have not taken this step.

4. EMPIRICAL EVALUATION
Our evaluation of SEEDS focuses on evaluating the ef-

fectiveness of using an instantiation, namely SEEDSapi, on
real applications and examining the associated costs. Specif-
ically, we designed our evaluation to answer the following
questions:

RQ1—Effectiveness. Is SEEDS effective at automatically
optimizing an application with respect to potential
code changes while abstracting low-level, tedious tasks?

RQ2—Exploration Capability. Can SEEDS be used to effec-
tively explore the search space of the energy impacts
of software engineer’s decisions to help the software
engineer learn more about energy implications of their
choices?

RQ3—Cost. Can SEEDS provide decision-making support
to the software engineer with regard to energy con-
sumption implications at a reasonable cost?

4.1 Experimental Subjects
The primary goal of SEEDSapi is to help software develop-

ers choose implementations of the Collections API to reduce
the amount of energy consumed by their Java applications.
To suitably evaluate the tool with respect to this goal, we se-
lected 7 Java applications that use the Collections API. We
also selected these programs because they have been used by
many researchers and they are representative of applications
that use the JCF. In addition, because SEEDSapi requires
a test suite, we needed to select applications that have an
associated test suite.

Table 2 describes the seven applications. In the table, the
first and second columns, Application and Version, together
identify the application version. The third column, LoC,
provides the number of lines of code. The fourth and fifth
columns, # Tests and Coverage (%), reports the number of
tests in the associated test suite provided with each subject
and the percentage of the statements in application that
are covered by the test suite, respectively. The last column
reports the number of potential sites for program changes.

We obtained the subjects from the three different pub-
lic repositories: (1) Software-artifact Infrastructure Reposi-
tory (SIR),8 which provides a variety of open-source projects
for empirical software engineering, (2) SourceForge,9 a popu-
lar repository for open-source projects, and (3) Apache Com-
mons,10 a collection of reusable components.

4.2 RQ1: Effectiveness
In our preliminary study (see Section 3.1), we demon-

strated that switching implementations of the Collections
API can improve the energy usage of an application. The
goal of our first research question is to determine whether
we can achieve the same type of improvements in real appli-
cations in a fully automatic manner.

To answer this question, we created 2 optimized versions
of each of our subjects using SEEDSapi, one where SEEDSapi

was allowed to use only Collections implementations from
the JCF and one where SEEDSapi was allowed to use Col-
lections implementations from all of its included libraries.
For the cases where SEEDSapi was able to optimize the
applications (i.e., it returned a version different than the
original), we ran the original and optimized versions on the
LEAP node 10 times. Then we used the Kruskal-Wallis

8http://sir.unl.edu/portal/index.php
9https://sourceforge.net

10http://commons.apache.org/



Table 3: SEEDSapi effectiveness in improving energy usage.

% Improvement

Application JCF Only ALL

Barbecue 17∗ 17∗

Jdepend 3∗ 6∗

Apache-xml-security 5† 5†

Joda-Time 8∗ 9†

Commons Lang 10† 13†

Commons Beanutils — —
Commons CLI 2∗ 2∗

∗ indicates instances where a single concrete change was
most effective.
† indicates instances where a concrete change at more than
one location was most effective.

test to determine whether there is a statistically significant
difference in the amount of energy usage consumed by the
versions. We chose to use the Kruskal-Wallis test because
we have one nominal variable (whether or not the change is
applied), one measurement value (the amount of energy con-
sumed), and we do not know whether our data are normally
distributed. For all of our tests, we chose an alpha (α) of
0.05. For the cases where there was a significant difference
in energy consumption, we computed the percentage change
in the means of the energy usages of the original and opti-
mized versions to determine how effective SEEDSapi was at
improving the energy usage of the applications.

Table 3 shows the data we generated to investigate the
effectiveness of SEEDSapi. In the table, the first column,
Application, shows the name of each subject. The remaining
columns show the percentage improvement in energy usage
of the optimized version produced by SEEDSapi when us-
ing only implementations provided by the JCF, JCF only,
and when using the implementation provided by JCF as well
as the implementations provided by the other libraries in-
cluded in the tool (see Section 3.2), ALL. Note that a dash
(—) indicates that SEEDSapi was unable to optimize the ap-
plication. A ∗ indicates that the optimized version was con-
structed using only one concrete change, and a † indicates
that the optimized version was constructed by applying the
best individual change at each location.

There are several interesting observations that we can
make from this data. First, SEEDSapi was very effective at
automatically improving the energy usage of our subjects.
For all but one application, it was able to decrease energy
usage by a statistically significant amount. Moreover, the
magnitude of the changes in energy usage are encouraging
as they range from 2 % to 17 % and were accomplished using
a simple search strategy that only considered changes ap-
plied in isolation. Second, the optimized versions produced
by SEEDSapi include versions that contain only one change
(7 cases), and versions where the most efficient change was
made at each location (5 cases). Before running this ex-
periment, we expected the most efficient version to be the
version composed of the most efficient change at each loca-
tion. The fact that approximately 60 % of the time, the most
efficient version contains only a single change, suggests that
there are complicated interactions among the changes that
are canceling out the expected benefits and that more ad-
vanced search strategies should attempt to understand and

potentially exploit such interactions.

4.3 RQ2: Exploration Capability
We posed several questions to examine how well the frame-

work could be used to explore the search space of the en-
ergy impacts of software engineer’s decisions to help the soft-
ware engineer learn more about energy implications of their
choices. Specifically, we used the SEEDSapi to explore the
questions:

RQ2a. How does the effectiveness of the energy optimization
change with more choices?

RQ2b. How often do developers choose the most energy-
efficient implementation without any help?

RQ2c. How often is each implementation the most energy
efficient?

RQ2a: We can use our results to also answer the ques-
tion “How does the effectiveness of the energy optimization
change with more choices?” As Table 3 shows, the effective-
ness of SEEDSapi only slightly increases when considering
all possible implementations of the Collections API rather
than just the implementations from the JCF. For 4 sub-
jects, adding the additional implementations had no impact
on the performance of the SEEDSapi. For the remaining
3 subjects, energy usage was improved, but the magnitude
of the improvement was 3 % or less. This was especially
surprising as many of the additional implementations are
specifically designed to be fast (execute quickly) and com-
pact (use less memory), traits that are commonly thought
to be strongly correlated with energy usage. The fact that
switching to such implementations does not drastically im-
prove energy usage suggests that the correlation may not be
as strong as was previously suspected.

RQ2b: To answer the question of how often developers
choose the most energy-efficient option on their own, we
used SEEDSapi to determine how often the most efficient
implementation choice is different than the implementation
used in the original application. In our subjects, there are
123 total locations where an instance of the Collections API
is allocated. When only implementations from the JCF are
considered, 56 % of the time (69 cases), switching away from
the original implementation resulted in an decrease in energy
usage. Similarly, when all possible implementations were
considered, 72 % of the time (89 cases) switching away from
the original implementation improved energy usage. These
results motivate the need for SEEDS as they demonstrate
that developers are are only infrequently choosing the most
energy efficient Collections API implementations.

RQ2c: The final supplemental question we answered is
how often each implementation of the Collections API is the
most energy efficient. Essentially, we want to know if there
is a single implementation that is always the most energy
efficient. When including all libraries, SEEDSapi chooses
among 157 distinct implementations of the Collections API.
Figure 3 shows how often each implementation is the most
efficient choice. In the figure, the x-axis includes a tick mark
for each implementation and is sorted by how often each im-
plementation is the most efficient. The y-axis shows the per-
centage of times each implementation was most efficient. In
our experiments, ArrayList, Vector, and HashSet (all from
the JCF are the implementations that were most frequently
the most efficient.
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Figure 3: Percentage of time each Collections API implementation is the most energy efficient.

As Figure 3 shows, there is not a single implementation
that is always the most energy efficient. Moreover, is shows
that there are 35 implementations that were the most en-
ergy efficient at least one time. This information further
motivates the needs fo SEEDS. It is unlikely that software
engineers would be willing or able to manually investigate
tens of possibilities to find the most efficient implementation.
This information is also potentially useful for future work in
designing better search strategies. While there are are 35
implementations that were the best at least once, there are
far more implementations that were never the most energy
efficient. This information could be used to help direct a
search strategy.

4.4 RQ3: Cost
The question “Can SEEDS provide decision-making sup-

port to the software engineer with regard to energy con-
sumption implications at a reasonable cost?” was addressed
by recording the times to perform each step of the framework
for each of the 7 subject applications.

Table 4 presents the estimated costs, in terms of wall clock
time, for optimizing applications. In the table, the first col-
umn, Application shows the name of each application. The
second column, Execution Time, shows the amount of time
necessary to execute each application using its test suite
once. The third column, # Reps. shows the number of
times each changed version was run to gather enough data
to compute the percentage difference in the means of the en-
ergy usage of the original and changed versions. The fourth
column shows the cardinality of the search space (i.e., the
number of changes explored by SEEDSapi), |Search Space|.
The fifth column, Analysis, shows the time to analyze the en-
ergy usage of the search space. The sixth column shows the
cost in hours, Cost, when optimizing the applications consid-
ering only implementations from the JCF (JCF Only). Fi-
nally, the seventh, eigth and ninth columns show the Search
Space, Analysis and Cost respectively when considering all
implementations included in SEEDSapi (ALL). As shown in
the table, the total cost ranges from 3 h to 64 h for JCF Only
and from 4 h to 175 h hours for ALL.

By far the largest portion of the cost of using SEEDSapi is
collecting and processing the power samples collected when
running each changed version. The other parts of the pro-
cess (i.e., generalizing the application, identifying collections
allocation locations in the application, and filtering based on
optimization parameters, and applying the selected changes),
required only a few minutes in total.

Although the overall costs are high, we believe that they
are reasonable for two primary reasons. First, optimizing
the energy usage of an application is a task that will only

be carried out infrequently; most likely as part of the final
release process. In this context even a wait of a few days is
likely acceptable as the tool is completely automated, and
could be run in parallel with other pre-release tasks such
as integration testing and other forms of quality assurance.
Second, the costs of using SEEDSapi can easily be tailored
to fit a software engineer’s specific circumstances. As Ta-
ble 4 shows, the overall cost of the technique is determine
by 4 factors, the amount of time it takes to execute the ap-
plication’s test suite, the number of repetitions that are run,
the time to analyze energy usage data and the size of the
application-specific search space and how the thoroughly the
search strategy expores the search space, all of which are eas-
ily controllable by software engineers. Reducing any of these
factors will also decrease the cost of the using the tool. For
example, in our evaluation, we used an exhaustive search
strategy and ran the entire test suite. Instead, we could
have used a non-exhaustive strategy and only executed part
of test suite in order to reduce the cost of using SEEDSapi.

4.5 Threats to Validity
We evaluated SEEDS by creating one instantiation. It is

possible that other instantiations will not lead to improved
energy usage of the user’s application. For instance, there
are many possible search strategies which may provide bet-
ter energy usage; and although our strategy is simple, it does
indeed show that SEEDS can result in optimized applica-
tions that are more energy efficient than the original appli-
cations. In addition, our study shows that the framework
can provide useful information to help understand their en-
ergy usage. We also demonstrate that useful instantiations
can be created, as choosing a collection implementation is a
common decision that is faced by developers, and our results
show that indeed SEEDS can automatically make decisions
and build optimized versions based on those decisions with
regard to energy usage.

For our evaluation, we selected 7 Java applications, used
their associated test suites, and chose 6 libraries as the
source of our considered potential choices. It is possible
that conclusions drawn from this set may not generalize to
all applications or other libraries or test suites. To minimize
the threat, the applications we considered were selected be-
cause they have been used by many researchers and they
are representative of applications using the JCF. The test
suites are provided by the applications and should thus test
typical expected inputs and operations. The libraries all
comply with the JCF, are publicly available, and are com-
monly used. We included libraries that were designed to be
fast and compact as well as others design with a focus on
other nonfunctional attributes.



Table 4: Cost to automatically optimize and application.

JCF Only ALL

Application Exe. Time (s) # Reps. |Search| Anal.(hrs) Cost (hrs) |Search| Anal. (hrs) Cost (hrs)

Barbecue 5 10 63 2 3 242 8 11
Jdepend 4 10 209 5 7 2,004 55 77
Apache-xml-security 124 10 52 46 64 144 125 175
Joda Time 3 10 102 2 3 262 5 7
Commons Lang 90 3 167 32 45 196 37 52
Commons Beanutils 104 3 23 6 8 63 14 19
Commons CLI 2 10 95 2 3 186 3 4

Finally, the energy profiling system used in this experi-
ment could be considered a threat to validity. In order to
minimize the threat, we used the LEAP monitoring system
used by others and able to measure the energy of several
components (e.g., cpu and memory) and the direct energy
of discrete events in kernel and user space systems.

5. RELATED WORK
To the best of our knowledge, this is the first work to

present a framework for optimizing the energy efficiency of
an application. However, there are several areas of related
work. The remainder of this section discusses these areas.

The most closely related area of work is autotuning opti-
mization of applications to improve performance. In con-
trast to common compiler optimizations, autotuning ap-
proaches often take into account details about the specific
application being optimized and the environment where it
will execute. Such approaches have been applied to specific
types of software (e.g., computer algebra libraries [50] and
high performance computing [38, 48] as well as for general
purpose languages and platforms (e.g., [44]).

Of the existing body of autotuning work, Chameleon is
most similar to our work. Chameleon is a tool for auto-
matically tuning the collection implementations used by an
application [44]. The most significant difference from our
work is that Chameleon is focused on runtime performance
and memory usage rather than energy efficiency. In addi-
tion, Chameleon is a dynamic technique that relies on col-
lecting deep, context-based information about how specific
collection instances are using during an execution. In con-
trast, our approach does not rely on such runtime monitor-
ing as such monitoring is likely to impact the precision of
our energy measurements. Unlike for performance tools, the
precision of power monitoring tools are insufficient for fine,
instruction-level accounting.

Second, there is a group of work that has attempted to
identify the underlying causes of energy consumption by em-
pirically investigating the impact of various software devel-
opment decisions. More specifically, researchers have inves-
tigated the impacts of refactorings [10], design patterns [8,
28, 41], sorting algorithms [6], web servers [29], program-
ming models [9, 43], and lock-free data structures [22] within
a single application in addition to investigating trends in
an application’s energy consumption among versions [17]
and among separate implementations of the same specifica-
tion [4, 34]. Insights gained from these and similar studies
could be integrated into the search component of SEEDS to
help it identify more energy-efficient changes more quickly.

Third, there is a significant amount of work focused on ac-

curately measuring energy consumption. Work in this area
has been conducted at various levels. Hardware instrumentation-
based approaches (e.g., [45, 49]) use physical instrumenta-
tion (e.g., soldering wires to power leads) to measure the ac-
tual power usage of a system. Simulation-based approaches
(e.g., [15, 30, 31]) use a cycle-accurate simulator to repli-
cate the actions of a processor at the architecture level and
estimate energy consumption of each executed cycle. Fi-
nally, estimation-based approaches (e.g., [2, 5, 16, 43]) build
models of energy-influencing features and use such models
to estimate energy usage.

Finally, researchers have begun to build on the accurate
measurement work mentioned above to provide source code-
level feedback on energy consumption to developers (e.g., [27]).
Although this work is promising, it requires developers to be
able to understand the information and manually make any
necessary changes. In contrast, SEEDS automatically ex-
plores many options without developer involvement.

6. CONCLUSIONS AND FUTURE WORK
SEEDS is the first known framework for helping software

engineering make decisions with regard to energy usage of
their application. Our empirical results show that using such
automation can indeed improve energy usage of real appli-
cations without requiring the software engineer to deal with
low-level energy profiling tools and analyses. Instantiating
SEEDS to make decisions about which library to choose
showed up to 17% energy usage improvement. While the te-
dious work is hidden from the developer, the collecting and
processing of power samples can take many hours depending
on the test suite execution time, number of repetitions, and
the search space. However, optimizing the energy usage will
likely be done infrequently and these costs can be tailored
to the software engineer’s specific circumstances.

We plan to investigate more advanced search strategies
and other instantiations of SEEDS. Specifically, we will
investigate using SEEDS to make other kinds of software
engineering decisions.
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