Web Application Testing with Customized Test Requirements – An Experimental Comparison Study

Sreedevi Sampath\(^1\), Sara Sprenkle\(^2\), Emily Gibson\(^2\), Lori Pollock\(^2\)

\(^1\)UMBC \(^2\)University of Delaware

November 10, 2006
Need for Reliable Web Applications

- **Expedia** sells more than $35 million in tickets every week\(^1\)
- In 2003, *amazon.co.uk* sold 64MB 200MHz HP iPAQ’s valued at £275 for £7.32\(^2\)
- Huge losses on web site failure\(^3\)
 - Financial services: $6.5 million per hour
 - Credit card sales applications: $2.4 million per hour
 - Media companies: $150,000 per hour
- Large number of failures during maintenance\(^4\)

2. The 10 worst web application failures in Information Age by Kenny MacIver. May 2003
3. Web Application Development - Bridging the Gap between QA and Development by Michal Blumenstyk
User-session-based Testing Process

User 1:
- register.jsp?name=ss&pswd=tst
- login.jsp?name=ss&pswd=tst
- logout.jsp

Beta Web Application (v.0.9) Deployment → Log User Requests → Create test cases

Web Application Implementation (v.1.0) → Test Cases

Expected Results → Actual Results

Oracle → Pass/ Fail
Measure Quality of Test Suites

• Test requirement coverage
 ▪ When to stop testing
 ▪ Which test cases to select
 ▪ How to reduce a test suite

• Control and data flow-based requirements
 ▪ Statement, Method, Branch, Def-use
 ▪ Covering all the statement requirements ensures the statement coverage criterion is satisfied
Measure Quality of Test Suites

- Test requirement coverage
 - When to stop testing
 - Which test cases to select
 - How to reduce a test suite
- Coverage and data flow-based requirements
- We proposed usage-based test requirements
 - Derived from usage-data

User 1:
- register.jsp?name=ss&pswd=tst
- login.jsp?name=ss&pswd=tst
- logout.jsp

base request

name-value pairs
Measure Quality of Test Suites

• Test requirement coverage
 ▪ When to stop testing
 ▪ Which test cases to select
 ▪ How to reduce a test suite

• Coverage and data flow-based requirements

• We proposed usage-based test requirements
 ▪ Derived from usage-data
 ▪ Requirement base

User 1:
 register.jsp?name=ss&pswd=tst
 login.jsp?name=ss&pswd=tst
 logout.jsp
Measure Quality of Test Suites

- Test requirement coverage
 - When to stop testing
 - Which test cases to select
 - How to reduce a test suite
- Coverage and data flow-based requirements
- We proposed usage-based test requirements
 - Derived from usage-data
 - Requirement base
 - A reduced suite that provides full base coverage indicates that for every base request b covered by the original suite, there is at least one test case in the reduced suite that covers b.
Customized Test Requirement: base

- **base**: create reduced suite that covers all base requests

- Example test case
 - GET login.jsp?name=xxx&pswd=yyy,
 - GET shop.jsp?item_no=aaa&book_name=ccc&price=60

- Requirements to be satisfied for base
 - \{GET login.jsp, GET shop.jsp\}
Test Suite Reduction With Requirement base

- Original Test Cases

 User 1:
 GET login.jsp?name=xxx&pswd=yyy
 GET shop.jsp?item_no=1&book_name=DaVinciCode&price=60

 User 2:
 GET login.jsp?name=pp&pswd=incorrectpassword
 GET shop.jsp?item_no=2&book_name=Elizabeth&price=160

- Requirements to be satisfied for base

 {GET login.jsp, GET shop.jsp}
Test Suite Reduction With Requirement base

- **Original Test Cases**

 User 1:
 - GET login.jsp
 - GET shop.jsp

 User 2:
 - GET login.jsp
 - GET shop.jsp

 Viewed as the same test case
 Only one test case is selected

- **Requirements to be satisfied for base**

 \{GET login.jsp, GET shop.jsp\}
Results From Previous Work

- Reduction Heuristics
- Number of Original Suites’ Statement Coverage Lost
- Reduction Heuristics Percent of Original Test Cases
- Number of Faults Detected

Summary:
- \textbf{base} creates reduced suites with large percent reduction
- But the reduced suites are not as effective as the original suite

Motivate need for alternate requirements
On further analysis we found that

- Certain faults are detected by a particular request sequence

- Unless sequence 2 is in the reduced suite, redirection code executed by User 2 will not be covered by reduced suite
On further analysis we found that

- Data associated with the request affects test suite effectiveness

- Unless Data 2 is present in the reduced suite, code executed by User 2 on unsuccessful login will not be covered by reduced suite
Customized Test Requirements: seqk

- seqk: cover all size k sequences of base requests

- Example test case

 `<GET login.jsp?name=xxx&pswd=yyy, GETshop.jsp?item_no=aaa&book_name=ccc&price=60>`

- Requirements to be satisfied for seq2

 for $k=2$, the sequence

 `{<GET login.jsp, GET shop.jsp>}`
Customized Test Requirements: name

- **name**: cover all base requests and names

- **Example test case**
 < GET login.jsp?name=xxx&pswd=yyy,
 GET shop.jsp?item_no=aaa&book_name=ccc&price=60 >

- **Requirements to be satisfied for name**
 {GET login.jsp?name&pswd,
 GET shop.jsp?item_no&book_name&price}
Customized Test Requirements: namevalue

- namevalue: cover all base requests and name and value pairs

- Example test case
 < GET login.jsp?name=xxx&pswd=yyy,
 GET shop.jsp?item_no=aaa&book_name=ccc&price=60 >

- Requirements to be satisfied for namevalue
 {GET login.jsp?name=xxx&pswd=yyy,
 GET shop.jsp?item_no=aaa&book_name=ccc&price=60}
Customized Test Requirements: seqkname

- **seqkname**: cover all size k sequences of base requests and names

- Example test case

 `< GET login.jsp?name=xxx&pswd=yyy, GET shop.jsp?item_no=aaa&book_name=ccc&price=60` >

- Requirements to be satisfied for seq2name

 for k = 2, the sequence

 `{<GET login.jsp?name&pswd, GET shop.jsp?item_no&book_name&price>}`
Experimental Study

- **Goal:** Evaluate tradeoffs between requirements
- **Metrics**
 - reduced test suite size
 - program coverage effectiveness
 - fault detection effectiveness
 - test suite replay costs
 - test suite reduction time and space costs
Expected Tradeoffs

• More data/context associated with requirement → More complex the requirement

• Expect suite size, program coverage, fault detection to follow the trend

 base <= seq2 <= seq2name
 base <= name <= namevalue
 name <= seq2name
Subject Applications

<table>
<thead>
<tr>
<th>Metrics</th>
<th>Masplas</th>
<th>Bookstore</th>
<th>CPM</th>
<th>DSpace</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>Java Servlets, JSP, MySql database</td>
<td>JSP, MySql database</td>
<td>Java Servlets, Files data store</td>
<td>Java Servlets, JSP, PostGreSQL and files data store</td>
</tr>
<tr>
<td>Non-comment Lines of Code</td>
<td>999</td>
<td>7791</td>
<td>9300</td>
<td>61729</td>
</tr>
<tr>
<td>Classes</td>
<td>9</td>
<td>11</td>
<td>75</td>
<td>508</td>
</tr>
<tr>
<td>Methods</td>
<td>42</td>
<td>385</td>
<td>172</td>
<td>4233</td>
</tr>
<tr>
<td>Faults</td>
<td>30</td>
<td>39</td>
<td>135</td>
<td>45</td>
</tr>
<tr>
<td>Test Cases (User sessions)</td>
<td>169</td>
<td>125</td>
<td>890</td>
<td>1342</td>
</tr>
</tbody>
</table>
Test Suite Characteristics

<table>
<thead>
<tr>
<th>Application</th>
<th># of test cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masplas</td>
<td>169</td>
</tr>
<tr>
<td>Book</td>
<td>125</td>
</tr>
<tr>
<td>CPM_ALL</td>
<td>890</td>
</tr>
<tr>
<td>CPM_Y04</td>
<td>261</td>
</tr>
<tr>
<td>CPM_Y05</td>
<td>629</td>
</tr>
<tr>
<td>CPM_A04</td>
<td>58</td>
</tr>
<tr>
<td>CPM_F05</td>
<td>203</td>
</tr>
<tr>
<td>CPM_M05</td>
<td>105</td>
</tr>
<tr>
<td>CPM_A05</td>
<td>168</td>
</tr>
<tr>
<td>CPM_D05</td>
<td>356</td>
</tr>
<tr>
<td>DSpace</td>
<td>1342</td>
</tr>
</tbody>
</table>
Reduction Techniques

- Our concept analysis-based test suite reduction algorithm [ASE 2004]
 - criterion: cover all requirements covered by original suite, while still covering the set of requirements covered by the original suite

- Harrold, Gupta and Soffa’s test suite reduction algorithm [TOSEM 1993]
 - criterion: Cover all requirements covered by the reduced suite
Case Study: Methodology (1)

Users → User requests → Web Application code → Logged requests → Parse requests → User sessions (original test suite)
Case Study: Methodology (2)

Original test suite

reduce with base

reduce with seq2

reduce with seq2name

Reduced suites

replay

replay

replay

Generate coverage, fault detection reports

Generate coverage, fault detection reports
Results: Reduced Test Suite Size

X-axis: Reduced test suites using the different requirements
Y-axis: \[
\frac{\text{# of test cases in reduced test suite}}{\text{# of test cases in original test suite}} \times 100
\]

Results:

- **base** selects the smallest reduced suite
- With increase in requirement complexity, the reduced test suite size increases
Results: Program Coverage Effectiveness

X-axis: Reduced test suites using the different requirements
Y-axis: # of statements covered by original suite – # of statements covered by reduced suite

Results:
• base loses the most program code
• Requirement has an impact on corresponding code covered
• With increase in requirement complexity, the statement loss decreases
Results: Fault Detection Effectiveness

X-axis: Reduced test suites using the different requirements

Y-axis: # of faults detected by original suite – # of faults detected by reduced suite

Results:
- **base** has the highest loss in fault detection
- With increase in requirement complexity, the number of faults lost decreases
Summary of Statistical Analysis

• To measure cost-effectiveness of the requirements we defined a figure of merit,
 \[\text{fom} = \text{redux} \times \text{cvg} \times \text{fd} \]
 – redux: percent reduction
 – cvg: percent coverage
 – fd: percent fault detection

• Higher the fom, more cost-effective the reduced suites created by requirement

• Requirements base and name emerged winners across all four subject applications
Recommendations

- For applications that are control dependent on input names and values
 - use requirements name, namevalue, seq2name

- For applications that have specific user patterns intended by developer
 - use requirements seq2, seq2name
Related Work

- **Structural** [Andrews et al., Lucca et al., Liu et al., Ricca et al.], **functional** [link/form testers] and **user-session-based web testing** [Elbaum et al., Sampath et al.] approaches exist

- **Approach to generate test cases that bypass client side validation** [Offutt et al.]
 - Our approach generates test cases that represent common application usage
 - Offutt et al. generate test cases that represent less normal, malicious usage
Conclusions

• Defined a set of test requirements and experimentally evaluated their applicability to test case selection

• Results indicate that more the data/context associated with the requirement, higher the effectiveness of the reduced suite

• From statistical analysis: requirements name and base consistently find small, effective reduced suites

Future Work

• Classify application usage and evaluate applicability of requirements for test case selection

• Evaluate test requirements with more web applications